Unknown

Dataset Information

0

Bacillus anthracis induces NLRP3 inflammasome activation and caspase-8-mediated apoptosis of macrophages to promote lethal anthrax.


ABSTRACT: Lethal toxin (LeTx)-mediated killing of myeloid cells is essential for Bacillus anthracis, the causative agent of anthrax, to establish systemic infection and induce lethal anthrax. The "LeTx-sensitive" NLRP1b inflammasome of BALB/c and 129S macrophages swiftly responds to LeTx intoxication with pyroptosis and secretion of interleukin (IL)-1β. However, human NLRP1 is nonresponsive to LeTx, prompting us to investigate B. anthracis host-pathogen interactions in C57BL/6J (B6) macrophages and mice that also lack a LeTx-sensitive Nlrp1b allele. Unexpectedly, we found that LeTx intoxication and live B. anthracis infection of B6 macrophages elicited robust secretion of IL-1β, which critically relied on the NLRP3 inflammasome. TNF signaling through both TNF receptor 1 (TNF-R1) and TNF-R2 were required for B. anthracis-induced NLRP3 inflammasome activation, which was further controlled by RIPK1 kinase activity and LeTx-mediated proteolytic inactivation of MAP kinase signaling. In addition to activating the NLRP3 inflammasome, LeTx-induced MAPKK inactivation and TNF production sensitized B. anthracis-infected macrophages to robust RIPK1- and caspase-8-dependent apoptosis. In agreement, purified LeTx triggered RIPK1 kinase activity- and caspase-8-dependent apoptosis only in macrophages primed with TNF or following engagement of TRIF-dependent Toll-like receptors. Consistently, genetic and pharmacological inhibition of RIPK1 inhibited NLRP3 inflammasome activation and apoptosis of LeTx-intoxicated and B. anthracis-infected macrophages. Caspase-8/RIPK3-deficient mice were significantly protected from B. anthracis-induced lethality, demonstrating the in vivo pathophysiological relevance of this cytotoxic mechanism. Collectively, these results establish TNF- and RIPK1 kinase activity-dependent NLRP3 inflammasome activation and macrophage apoptosis as key host-pathogen mechanisms in lethal anthrax.

SUBMITTER: Van Hauwermeiren F 

PROVIDER: S-EPMC8764678 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC4046938 | biostudies-literature
| S-EPMC218774 | biostudies-literature
| S-EPMC2770336 | biostudies-literature
| S-EPMC2440672 | biostudies-literature
| S-EPMC7082064 | biostudies-literature
| S-EPMC2643637 | biostudies-literature
| S-EPMC4810201 | biostudies-literature
| S-EPMC6203254 | biostudies-other
| S-EPMC4198042 | biostudies-literature
| S-EPMC3753543 | biostudies-literature