Defective Ultrathin ZnIn2 S4 for Photoreductive Deuteration of Carbonyls Using D2 O as the Deuterium Source.
Ontology highlight
ABSTRACT: Deuterium (D) labeling is of great value in organic synthesis, pharmaceutical industry, and materials science. However, the state-of-the-art deuteration methods generally require noble metal catalysts, expensive deuterium sources, or harsh reaction conditions. Herein, noble metal-free and ultrathin ZnIn2 S4 (ZIS) is reported as an effective photocatalyst for visible light-driven reductive deuteration of carbonyls to produce deuterated alcohols using heavy water (D2 O) as the sole deuterium source. Defective two-dimensional ZIS nanosheets (D-ZIS) are prepared in a surfactant assisted bottom-up route exhibited much enhanced performance than the pristine ZIS counterpart. A systematic study is carried out to elucidate the contributing factors and it is found that the in situ surfactant modification enabled D-ZIS to expose more defect sites for charge carrier separation and active D-species generation, as well as high specific surface area, all of which are beneficial for the desirable deuteration reaction. This work highlights the great potential in developing low-cost semiconductor-based photocatalysts for organic deuteration in D2 O, circumventing expensive deuterium reagents and harsh conditions.
SUBMITTER: Han C
PROVIDER: S-EPMC8787392 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA