Unknown

Dataset Information

0

Repeated cocaine administration upregulates CB2 receptor expression in striatal medium-spiny neurons that express dopamine D1 receptors in mice.


ABSTRACT: Cannabinoid CB2 receptors (CB2R) are importantly involved in drug reward and addiction. However, the cellular mechanisms underlying CB2R action remain unclear. We have previously reported that cocaine self-administration upregulates CB2R expression in midbrain dopamine (DA) neurons. In the present study, we investigated whether cocaine or heroin also alters CB2R expression in striatal medium-spiny neurons that express dopamine D1 or D2 receptors (D1-MSNs, D2-MSNs) and microglia. Due to the concern of CB2R antibody specificity, we developed three mouse CB2-specific probes to detect CB2R mRNA using quantitative RT-PCR and RNAscope in situ hybridization (ISH) assays. We found that a single injection of cocaine failed to alter, while repeated cocaine injections or self-administration dose-dependently upregulated CB2R gene expression in both brain (cortex and striatum) and periphery (spleen). In contrast, repeated administration of heroin produced a dose-dependent reduction in striatal CB2 mRNA expression. RNAscope ISH assays detected CB2R mRNA in striatal D1- and D2-MSNs, not in microglia. We then used transgenic CX3CR1eGFP/+ microglia reporter mice and D1- or D2-Cre-RiboTag mice to purify striatal microglia or ribosome-associated mRNAs from CX3CR1eGFP/+, D1-MSNs, or D2-MSNs, respectively. We found that CB2R upregulation occurred mainly in D1-MSNs, not in D2-MSNs or microglia, in the nucleus accumbens rather than the dorsal striatum. These findings indicate that repeated cocaine exposure may upregulate CB2R expression in both brain and spleen, with regional and cell type-specific profiles. In the striatum, CB2R upregulation occurs mainly in D1-MSNs in the nucleus accumbens. Given the important role of D1-MSNs in brain reward function, the present findings provide new insight into mechanisms by which brain CB2Rs modulate cocaine action.

SUBMITTER: Zhang HY 

PROVIDER: S-EPMC8975868 | biostudies-literature | 2022 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Repeated cocaine administration upregulates CB<sub>2</sub> receptor expression in striatal medium-spiny neurons that express dopamine D<sub>1</sub> receptors in mice.

Zhang Hai-Ying HY   De Biase Lindsay L   Chandra Ramesh R   Shen Hui H   Liu Qing-Rong QR   Gardner Eliot E   Lobo Mary Kay MK   Xi Zheng-Xiong ZX  

Acta pharmacologica Sinica 20210727 4


Cannabinoid CB<sub>2</sub> receptors (CB<sub>2</sub>R) are importantly involved in drug reward and addiction. However, the cellular mechanisms underlying CB<sub>2</sub>R action remain unclear. We have previously reported that cocaine self-administration upregulates CB<sub>2</sub>R expression in midbrain dopamine (DA) neurons. In the present study, we investigated whether cocaine or heroin also alters CB<sub>2</sub>R expression in striatal medium-spiny neurons that express dopamine D<sub>1</sub>  ...[more]

Similar Datasets

| S-EPMC7695336 | biostudies-literature
| S-EPMC10864017 | biostudies-literature
| S-EPMC3343722 | biostudies-other
| S-EPMC2094700 | biostudies-literature
| S-EPMC7709116 | biostudies-literature
| S-EPMC9758228 | biostudies-literature
| S-EPMC5296642 | biostudies-literature
| S-EPMC3074638 | biostudies-literature
| S-EPMC9377695 | biostudies-literature
| S-EPMC3235748 | biostudies-literature