Project description:We here identified that the trimeric spike protein of SARS-CoV-2 could bind to TLR4 directly and robustly activate downstream signaling in monocytes and neutrophils. Moreover, specific TLR4 or NFKB inhibitor, or knockout of MyD88 could significantly block IL-1B induction by spike protein. We thus reveal that spike protein of SARS-CoV-2 functions as a potent stimulus causing TLR4 activation and sepsis related abnormal responses.
Project description:Conjunctival epithelial cells, which express viral-entry receptors angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine type 2 (TMPRSS2), constitute the largest exposed epithelium of the ocular surface tissue and may represent a relevant viral-entry route. To address this question, we generated an organotypic air-liquid-interface model of conjunctival epithelium, composed of basal, suprabasal, and superficial epithelial cells, and fibroblasts, which could be maintained successfully up to day 75 of differentiation. Using single-cell RNA sequencing (RNA-seq), with complementary imaging and virological assays, we observed that while all conjunctival cell types were permissive to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome expression, a productive infection did not ensue. The early innate immune response to SARS-CoV-2 infection in conjunctival cells was characterised by a robust autocrine and paracrine NF-κB activity, without activation of antiviral interferon signalling. Collectively, these data enrich our understanding of SARS-CoV-2 infection at the human ocular surface, with potential implications for the design of preventive strategies and conjunctival transplantation.
Project description:Human conjunctival cell lines are useful tools for modeling ocular surface disease and evaluation of ocular drugs and cosmetics. However, gene expression in these cells may not be comparable to primary cultured cells, raising doubts that they could be used as a substitute. We aimed to ascertain the similarities of global gene expression between commonly used cell lines and primary cells using a microarray approach. The Affymetrix U133A chip (>22,000 genes) was used to investigate conjunctival tissue (CT), primary conjunctival epithelial cells (PCEC), two conjunctival epithelial cell lines (IOBA-NHC and ChWK), and HCEC-T, a human corneal epithelial cell line (control). Using principal component analysis, the PCEC profile was clustered more closely to conjunctival tissue than either of the two cell lines. Certain extracellular matrix genes were differentially upregulated in CT compared to PCEC, suggesting presence of fibroblasts in addition to epithelial cells in CT. Overall, 67.3% (95% CI: 66.7-67.9) of transcripts in IOBA-NHC were within 1.5-fold of the corresponding transcripts in PCEC, but only 62.2% (95% CI: 61.5-62.9) in the case of ChWK. In HCEC-T, the proportion was only 58.8% (95% CI 58.1-59.4), suggesting less resemblance to PCEC than the conjunctival epithelial cell lines. The IOBA-NHC profile was more similar to PCEC than ChWK, for all genes and genes concerned with membrane association, communication, development, and regulation of metabolism, especially protein and nucleic acid metabolism. The correlation of normalized gene expression levels was high between either the IOBA-NHC or ChWK and PCEC for genes concerned with cell defense, viral life cycle, antigen presentation, antioxidation, or ubiquitin ligation. In order to evaluate the functional significance of the altered gene expression in IOBA-NHC cells, we evaluated a few proteins important for epithelial differentiation or defense, corresponding to the transcripts for S100A9, TGM2, and TLR4. Protein levels of S100A9 and TGM2 were indeed raised, and TLR4 decreased, in IOBA-NHC compared to PCEC. Gene expression in conjunctival cell lines differs from primary cells, but the profile varies according to functional gene categories. Depending on the methodology of proposed studies, if there is limited availability of PCEC, NHC-IOBA may be more suitable than ChWK, but even then, epithelial differentiation and innate immunity functions in NHC-IOBA may differ from primary cells.
Project description:IntroductionThe inflammatory potential of SARS-CoV-2 Spike S1 (Spike) has never been tested in human primary macrophages (MΦ). Different recombinant Spikes might display different effects in vitro, according to protein length and glycosylation, and endotoxin (lipopolysaccharide, LPS) contamination.ObjectivesTo assess (1) the effects of different Spikes on human primary MΦ inflammation; (2) whether LPS contamination of recombinant Spike is (con)cause in vitro of increased MΦ inflammation.MethodsHuman primary MΦ were incubated in the presence/absence of several different Spikes (10 nM) or graded concentrations of LPS. Pro-inflammatory marker expression (qPCR and ELISA) and supernatant endotoxin contamination (LAL test) were the main readouts.ResultsLPS-free, glycosylated Spike (the form expressed in infected humans) caused no inflammation in human primary MΦ. Two (out of five) Spikes were contaminated with endotoxins ≥ 3 EU/ml and triggered inflammation. A non-contaminated non-glycosylated Spike produced in E. coli induced MΦ inflammation.ConclusionsGlycosylated Spike per se is not pro-inflammatory for human MΦ, a feature which may be crucial to evade the host innate immunity. In vitro studies with commercially available Spike should be conducted with excruciating attention to potential LPS contamination.
Project description:Chronic activation of microglia is a driving factor in the progression of neuroinflammatory diseases, and mechanisms that regulate microglial inflammatory signaling are potential targets for novel therapeutics. Regulator of G protein Signaling 10 is the most abundant RGS protein in microglia, where it suppresses inflammatory gene expression and reduces microglia-mediated neurotoxicity. In particular, microglial RGS10 downregulates the expression of pro-inflammatory mediators including cyclooxygenase 2 (COX-2) following stimulation with lipopolysaccharide (LPS). However, the mechanism by which RGS10 affects inflammatory signaling is unknown and is independent of its canonical G protein targeted mechanism. Here, we sought to identify non-canonical RGS10 interacting partners that mediate its anti-inflammatory mechanism. Through RGS10 co-immunoprecipitation coupled with mass spectrometry, we identified STIM2, an endoplasmic reticulum (ER) localized calcium sensor and a component of the store-operated calcium entry (SOCE) machinery, as a novel RGS10 interacting protein in microglia. Direct immunoprecipitation experiments confirmed RGS10-STIM2 interaction in multiple microglia and macrophage cell lines, as well as in primary cells, with no interaction observed with the homologue STIM1. We further determined that STIM2, Orai channels, and the calcium-dependent phosphatase calcineurin are essential for LPS-induced COX-2 production in microglia, and this pathway is required for the inhibitory effect of RGS10 on COX-2. Additionally, our data demonstrated that RGS10 suppresses SOCE triggered by ER calcium depletion and that ER calcium depletion, which induces SOCE, amplifies pro-inflammatory genes. In addition to COX-2, we also show that RGS10 suppresses the expression of pro-inflammatory cytokines in microglia in response to thrombin and LPS stimulation, and all of these effects require SOCE. Collectively, the physical and functional links between RGS10 and STIM2 suggest a complex regulatory network connecting RGS10, SOCE, and pro-inflammatory gene expression in microglia, with broad implications in the pathogenesis and treatment of chronic neuroinflammation.
Project description:In response to viral infection, neutrophils release inflammatory mediators as part of the innate immune response, contributing to pathogen clearance through virus internalization and killing. Pre-existing co-morbidities, correlating to incidence of severe COVID-19, are associated with chronic airway neutrophilia and examination of COVID-19 lung tissue revealed a series of epithelial pathologies associated with infiltration and activation of neutrophils. To determine the impact of neutrophil-epithelial interactions on the infectivity and inflammatory response to SARS-CoV-2 infection, we developed a co-culture model of airway neutrophilia. We discovered that SARS-CoV-2 infection of the airway epithelium alone does not result in a notable release of pro-inflammatory cytokines, however in the presence of neutrophils, the inflammatory response is both polarized and significantly augmented, epithelial barrier integrity in impaired and viral load of the airway epithelium increased. This study reveals a key role for neutrophil-epithelial interactions in determining inflammation, infectivity, and outcomes in response to SARS-CoV-2 infection.HighlightsWe have developed a model to study neutrophil-epithelial interactions which better reflects the in vivo situation than monocultures Neutrophils significantly augment SARS-CoV-2 mediated, pro-inflammatory cytokine release from the epithelium indicating a key interactionSARS-CoV-2 infection leads to a polarized inflammatory response in differentiated airway epitheliumDisruption of the epithelial barrier via addition of neutrophils or cytokines leads to increased infectionStudy reveals a key role for neutrophil-epithelial interactions in determining outcome/infectivity.
Project description:BackgroundExposure to diesel engine exhaust particles (DEPs) has been associated with several adverse health outcomes in which inflammation seems to play a key role. DEPs contain a range of different inorganic and organic compounds, including polycyclic aromatic hydrocarbons (PAHs). During the metabolic activation of PAHs, CYP1A1 enzymes are known to play a critical role. In the present study we investigated the potential of a characterised sample of DEPs to induce cytotoxicity, to influence the expression of CYP1A1 and inflammation-related genes, and to activate intracellular signalling pathways, in human bronchial epithelial cells. We specifically investigated to what extent DEP-induced expression of interleukin (IL)-6, IL-8 and cyclooxygenase (COX)-2 was regulated differentially from DEP-induced expression of CYP1A1.ResultsThe cytotoxicity of the DEPs was characterised by a marked time- and concentration-dependent increase in necrotic cells at 4 h and above 200 ?g/ml (~ 30 ?g/cm2). DEP-induced DNA-damage was only apparent at high concentrations (? 200 ?g/ml). IL-6, IL-8 and COX-2 were the three most up-regulated genes by the DEPs in a screening of 20 selected inflammation-related genes. DEP-induced expression of CYP1A1 was detected at very low concentrations (0.025 ?g/ml), compared to the expression of IL-6, IL-8 and COX-2 (50-100 ?g/ml). A CYP1A1 inhibitor (?-naphthoflavone), nearly abolished the DEP-induced expression of IL-8 and COX-2. Of the investigated mitogen-activated protein kinases (MAPKs), the DEPs induced activation of p38. A p38 inhibitor (SB202190) strongly reduced DEP-induced expression of IL-6, IL-8 and COX-2, but only moderately affected the expression of CYP1A1. The DEPs also activated the nuclear factor-?B (NF-?B) pathway, and suppression by siRNA tended to reduce the DEP-induced expression of IL-8 and COX-2, but not CYP1A1.ConclusionThe present study indicates that DEPs induce both CYP1A1 and pro-inflammatory responses in vitro, but via differential intracellular pathways. DEP-induced pro-inflammatory responses seem to occur via activation of NF-?B and p38 and are facilitated by CYP1A1. However, the DEP-induced CYP1A1 response does not seem to involve NF-?B and p38 activation. Notably, the present study also indicates that expression of CYP1A1 may represent a particular sensitive biomarker of DEP-exposure.
Project description:COVID-19 caused by SARS-CoV-2 spread rapidly around the world, endangering the health of people globally. The SARS-CoV-2 spike protein initiates entry into target cells by binding to human angiotensin-converting enzyme 2 (ACE2). In this study, we developed DNA aptamers that specifically bind to the SARS-CoV-2 spike protein, thereby inhibiting its binding to ACE2. DNA aptamers are small nucleic acid fragments with random structures that selectively bind to various target molecules. We identified nine aptamers targeting the SARS-CoV-2 spike protein using the systematic evolution of ligands by exponential enrichment (SELEX) method and selected three optimal aptamers by comparing their binding affinities. Additionally, we confirmed that the DNA aptamers suppressed pro-inflammatory cytokines induced by the SARS-CoV-2 spike protein in ACE2-overexpressing HEK293 cells. Overall, the DNA aptamer developed in this study has the potential to bind to the SARS-CoV-2 spike protein and inhibit or block its interaction with ACE2. Thus, our DNA aptamers can be used as new biological tools for the prevention and diagnosis of SARS-CoV-2 infection.
Project description:Although tropism of SARS-CoV-2 for respiratory tract epithelial cells is well established, an open question is whether the conjunctival epithelium is also a target for SARS-CoV-2. Conjunctival epithelial cells, which express viral entry receptors ACE2 and TMPRSS2, constitute the largest exposed epithelium of the ocular surface tissue, and may represent a relevant viral entry route. To address this question, we generated an organotypic air-liquid-interface model of conjunctival epithelium, composed of progenitor, basal and superficial epithelial cells and fibroblasts, which could be maintained successfully up to day 75 of differentiation. Using single cell RNA-Seq, with complementary imaging and virological assays, we observed that while all conjunctival cell types were permissive to SARS-CoV-2 genome expression, a productive infection did not ensure. The early innate immune response to SARS-CoV-2 infection in conjunctival cells was characterised by a robust NF-Kβ activity, alongside evidence of suppression of antiviral interferon signalling. Collectively these data enrich our understanding of SARS-CoV-2 infection at the human ocular surface, with potential implications for the design of preventive strategies such as personal protective equipment.