Project description:We here identified that the trimeric spike protein of SARS-CoV-2 could bind to TLR4 directly and robustly activate downstream signaling in monocytes and neutrophils. Moreover, specific TLR4 or NFKB inhibitor, or knockout of MyD88 could significantly block IL-1B induction by spike protein. We thus reveal that spike protein of SARS-CoV-2 functions as a potent stimulus causing TLR4 activation and sepsis related abnormal responses.
Project description:COVID-19 is a viral disease caused by SARS-CoV-2. This disease is characterized primarily, but not exclusively, by respiratory tract inflammation. SARS-CoV-2 infection relies on the binding of spike protein to ACE2 on the host cells. The virus uses the protease TMPRSS2 as an entry activator. Human lung macrophages (HLMs) are the most abundant immune cells in the lung and fulfill a variety of specialized functions mediated by the production of cytokines and chemokines. The aim of this project was to investigate the effects of spike protein on HLM activation and the expression of ACE2 and TMPRSS2 in HLMs. Spike protein induced CXCL8, IL-6, TNF-α, and IL-1β release from HLMs; promoted efficient phagocytosis; and induced dysfunction of intracellular Ca2+ concentration by increasing lysosomal Ca2+ content in HLMs. Microscopy experiments revealed that HLM tracking was affected by spike protein activation. Finally, HLMs constitutively expressed mRNAs for ACE2 and TMPRSS2. In conclusion, during SARS-CoV-2 infection, macrophages seem to play a key role in lung injury, resulting in immunological dysfunction and respiratory disease.
Project description:The spike (S) glycoprotein in the envelope of SARS-CoV-2 is densely glycosylated but the functions of its glycosylation are unknown. Here we demonstrate that S is recognized in a glycan-dependent manner by multiple innate immune receptors including the mannose receptor MR/CD206, DC-SIGN/CD209, L-SIGN/CD209L, and MGL/CLEC10A/CD301. Single-cell RNA sequencing analyses indicate that such receptors are highly expressed in innate immune cells in tissues susceptible to SARS-CoV-2 infection. Binding of the above receptors to S is characterized by affinities in the picomolar range and consistent with S glycosylation analysis demonstrating a variety of N- and O-glycans as receptor ligands. These results indicate multiple routes for SARS-CoV-2 to interact with human cells and suggest alternative strategies for therapeutic intervention.
Project description:Thrombosis of the lung microvasculature is a characteristic of COVID-19 disease, which is observed in large excess compared to other forms of acute respiratory distress syndrome and thus suggests a trigger for thrombosis that is endogenous to the lung. Our recent work has shown that the SARS-CoV-2 Spike protein activates the cellular TMEM16F chloride channel and scramblase. Through a screening on >3,000 FDA/EMA approved drugs, we identified Niclosamide and Clofazimine as the most effective molecules at inhibiting Spike-induced TMEM16 activation. As TMEM16F plays an important role in stimulating the procoagulant activity of platelets, we investigated whether Spike directly affects platelet activation and pro-thrombotic function and tested the effect of Niclosamide and Clofazimine on these processes. Here we show that Spike, present either on the virion envelope or on the cell plasma membrane, promotes platelet activation, adhesion and spreading. Spike was active as a sole agonist or, even more effectively, by enhancing the function of known platelet activators. In particular, Spike-induced a marked procoagulant phenotype in platelets, by enhancing Ca2+ flux, phosphatidylserine externalization on the platelet outer cell membrane, and thrombin generation. Eventually, this increased thrombin-induced clot formation and retraction. Both Niclosamide and Clofazimine blocked this Spike-induced procoagulant response. These findings provide a pathogenic mechanism to explain lung thrombosis-associated with severe COVID-19 infection. We propose that Spike, present in SARS-CoV-2 virions or exposed on the surface of infected cells in the lungs, enhances the effects of inflammation and leads to local platelet stimulation and subsequent activation of the coagulation cascade. As platelet TMEM16F is central in this process, these findings reinforce the rationale of repurposing Niclosamide for COVID-19 therapy.