Unknown

Dataset Information

0

Type II porous ionic liquid based on metal-organic cages that enables L-tryptophan identification.


ABSTRACT: Porous liquids with chemical separation properties are quite well-studied in general, but there is only a handful of reports in the context of identification and separation of non-gaseous molecules. Herein, we report a Type II porous ionic liquid composed of coordination cages that exhibits exceptional selectivity towards L-tryptophan (L-Trp) over other aromatic amino acids. A previously known class of anionic organic-inorganic hybrid doughnut-like cage (HD) is dissolved in trihexyltetradecylphosphonium chloride (THTP_Cl). The resulting liquid, HD/THTP_Cl, is thereby composed of common components, facile to prepare, and exhibit room temperature fluidity. The permanent porosity is manifested by the high-pressure isotherm for CH4 and modeling studies. With evidence from time-dependent amino acid uptake, competitive extraction studies and molecular dynamic simulations, HD/THTP_Cl exhibit better selectivity towards L-Trp than other solid state sorbents, and we attribute it to not only the intrinsic porosity of HD but also the host-guest interactions between HD and L-Trp. Specifically, each HD unit is filled with nearly 5 L-Trp molecules, which is higher than the L-Trp occupation in the structure unit of other benchmark metal-organic frameworks.

SUBMITTER: Zhang Z 

PROVIDER: S-EPMC9054828 | biostudies-literature | 2022 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Type II porous ionic liquid based on metal-organic cages that enables L-tryptophan identification.

Zhang Zhuxiu Z   Yang Baolin B   Zhang Bingjie B   Cui Mifen M   Tang Jihai J   Qiao Xu X  

Nature communications 20220429 1


Porous liquids with chemical separation properties are quite well-studied in general, but there is only a handful of reports in the context of identification and separation of non-gaseous molecules. Herein, we report a Type II porous ionic liquid composed of coordination cages that exhibits exceptional selectivity towards L-tryptophan (L-Trp) over other aromatic amino acids. A previously known class of anionic organic-inorganic hybrid doughnut-like cage (HD) is dissolved in trihexyltetradecylpho  ...[more]

Similar Datasets

| S-EPMC8163318 | biostudies-literature
| S-EPMC9166563 | biostudies-literature
| S-EPMC5707510 | biostudies-literature
| S-EPMC11565643 | biostudies-literature
| S-EPMC8528071 | biostudies-literature
| S-EPMC7530991 | biostudies-literature
| S-EPMC5101576 | biostudies-literature
| S-EPMC6120484 | biostudies-literature
| S-EPMC6137287 | biostudies-literature
| S-EPMC8481281 | biostudies-literature