Unknown

Dataset Information

0

Three-dimensional ordered macroporous ZIF-8 nanoparticle-derived nitrogen-doped hierarchical porous carbons for high-performance lithium-sulfur batteries.


ABSTRACT: Lithium-sulfur (Li-S) batteries have attracted considerable attention due to their ultra-high specific capacity and energy density. However, there are still problems to be resolved such as poor conductivity of sulfur cathodes and dissolution of polysulfides in organic electrolytes. Herein, a novel ZIF-8-derived nitrogen-doped connected ordered macro-microporous carbon (COM-MPC) was developed by a dual solvent-assisted in situ crystallization method within a face-centered cubic stacking sphere template, which acts as an advanced sulfur host for enhanced Li-S battery performance. Compared with the conventional predominant microporous C-ZIF-8, the unique hierarchical macro-microporous structure with nitrogen doping not only renders polysulfide intermediates enhanced entrapment by confining the effect of micropores and chemisorption of doping N atoms, but also facilitates electrolyte accessibility and efficient ion transport owing to the ordered macroporous structure. Benefitting from this, the COM-MPC@S cathode delivers a high initial specific capacity of 1498.5 mA h g-1 and a reversible specific capacity of 1118.9 mA h g-1. Moreover, the COM-MPC@S cathode exhibits 82.3% of capacity retention within 10th to 50th cycle at 0.5C and a large capacity of 608.5 mA h g-1 after 50 cycles at a higher rate of 1C, and this enhanced cycling stability and rate capability demonstrate great practical application potential in Li-S battery systems.

SUBMITTER: Ji X 

PROVIDER: S-EPMC9057854 | biostudies-literature | 2020 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Three-dimensional ordered macroporous ZIF-8 nanoparticle-derived nitrogen-doped hierarchical porous carbons for high-performance lithium-sulfur batteries.

Ji Xinxin X   Li Qian Q   Yu Haoquan H   Hu Xiaolin X   Luo Yuanzheng Y   Li Buyin B  

RSC advances 20201118 69


Lithium-sulfur (Li-S) batteries have attracted considerable attention due to their ultra-high specific capacity and energy density. However, there are still problems to be resolved such as poor conductivity of sulfur cathodes and dissolution of polysulfides in organic electrolytes. Herein, a novel ZIF-8-derived nitrogen-doped connected ordered macro-microporous carbon (COM-MPC) was developed by a dual solvent-assisted <i>in situ</i> crystallization method within a face-centered cubic stacking sp  ...[more]

Similar Datasets

| S-EPMC7770743 | biostudies-literature
| S-EPMC7697050 | biostudies-literature
| S-EPMC4756705 | biostudies-literature
| S-EPMC9072952 | biostudies-literature
| S-EPMC8624343 | biostudies-literature
| S-EPMC6417269 | biostudies-literature
| S-EPMC5869551 | biostudies-literature
| S-EPMC7471285 | biostudies-literature
| S-EPMC6642196 | biostudies-literature
| S-EPMC4542155 | biostudies-literature