Unknown

Dataset Information

0

Facile synthesis of Camellia oleifera shell-derived hard carbon as an anode material for lithium-ion batteries.


ABSTRACT: A comparatively facile and ecofriendly process has been developed to synthesize porous carbon materials from Camellia oleifera shells. Potassium carbonate solution (K2CO3) impregnation is introduced to modify the functional groups on the surface of Camellia oleifera shells, which may play a role in promoting the development of pore structure during carbonization treatment. Moreover, a small amount of naturally embedded nitrogen and sulfur in the Camellia oleifera shells can also bring about the formation of pores. The Camellia oleifera shell-derived carbon has a large specific surface area of 1479 m2 g-1 with a total pore volume of 0.832 cm3 g-1 after being carbonized at 900 °C for 1 h. Furthermore, when used as an anode for lithium-ion batteries, the sample shows superior electrochemical performance with a specific capacity of 483 mA h g-1 after 100 cycles measured at 200 mA g-1 current density. Surprisingly, the specific capacity is even gradually increased with cycling. In addition, this sample exhibits almost 100% retention capacity after 250 cycles at a current density of 200 mA g-1.

SUBMITTER: Ma B 

PROVIDER: S-EPMC9065565 | biostudies-literature | 2019 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Facile synthesis of <i>Camellia oleifera</i> shell-derived hard carbon as an anode material for lithium-ion batteries.

Ma Beibei B   Huang Yewei Y   Nie Zhenzhen Z   Qiu Xiaobin X   Su Dawei D   Wang Guoxiu G   Yuan Jianmin J   Xie Xiuqiang X   Wu Zhenjun Z  

RSC advances 20190601 35


A comparatively facile and ecofriendly process has been developed to synthesize porous carbon materials from <i>Camellia oleifera</i> shells. Potassium carbonate solution (K<sub>2</sub>CO<sub>3</sub>) impregnation is introduced to modify the functional groups on the surface of <i>Camellia oleifera</i> shells, which may play a role in promoting the development of pore structure during carbonization treatment. Moreover, a small amount of naturally embedded nitrogen and sulfur in the <i>Camellia ol  ...[more]

Similar Datasets

| S-EPMC11658506 | biostudies-literature
| S-EPMC4668578 | biostudies-literature
| S-EPMC3730167 | biostudies-literature
| S-EPMC8145426 | biostudies-literature
| S-EPMC9320587 | biostudies-literature
| S-EPMC5067775 | biostudies-literature
| S-EPMC5344618 | biostudies-literature
| S-EPMC8746817 | biostudies-literature
| S-EPMC5510008 | biostudies-other
| S-EPMC4288231 | biostudies-literature