Unknown

Dataset Information

0

Cytosolic peptides encoding CaV1 C-termini downregulate the calcium channel activity-neuritogenesis coupling.


ABSTRACT: L-type Ca2+ (CaV1) channels transduce channel activities into nuclear signals critical to neuritogenesis. Also, standalone peptides encoded by CaV1 DCT (distal carboxyl-terminus) act as nuclear transcription factors reportedly promoting neuritogenesis. Here, by focusing on exemplary CaV1.3 and cortical neurons under basal conditions, we discover that cytosolic DCT peptides downregulate neurite outgrowth by the interactions with CaV1's apo-calmodulin binding motif. Distinct from nuclear DCT, various cytosolic peptides exert a gradient of inhibitory effects on Ca2+ influx via CaV1 channels and neurite extension and arborization, and also the intermediate events including CREB activation and c-Fos expression. The inhibition efficacies of DCT are quantitatively correlated with its binding affinities. Meanwhile, cytosolic inhibition tends to facilitate neuritogenesis indirectly by favoring Ca2+-sensitive nuclear retention of DCT. In summary, DCT peptides as a class of CaV1 inhibitors specifically regulate the channel activity-neuritogenesis coupling in a variant-, affinity-, and localization-dependent manner.

SUBMITTER: Yang Y 

PROVIDER: S-EPMC9120191 | biostudies-literature | 2022 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Cytosolic peptides encoding Ca<sub>V</sub>1 C-termini downregulate the calcium channel activity-neuritogenesis coupling.

Yang Yaxiong Y   Yu Zhen Z   Geng Jinli J   Liu Min M   Liu Nan N   Li Ping P   Hong Weili W   Yue Shuhua S   Jiang He H   Ge Haiyan H   Qian Feng F   Xiong Wei W   Wang Ping P   Song Sen S   Li Xiaomei X   Fan Yubo Y   Liu Xiaodong X  

Communications biology 20220519 1


L-type Ca<sup>2+</sup> (Ca<sub>V</sub>1) channels transduce channel activities into nuclear signals critical to neuritogenesis. Also, standalone peptides encoded by Ca<sub>V</sub>1 DCT (distal carboxyl-terminus) act as nuclear transcription factors reportedly promoting neuritogenesis. Here, by focusing on exemplary Ca<sub>V</sub>1.3 and cortical neurons under basal conditions, we discover that cytosolic DCT peptides downregulate neurite outgrowth by the interactions with Ca<sub>V</sub>1's apo-ca  ...[more]

Similar Datasets

| S-EPMC11405698 | biostudies-literature
| S-EPMC10493266 | biostudies-literature
| S-EPMC5503510 | biostudies-literature
| S-EPMC3642037 | biostudies-literature
| S-EPMC6872662 | biostudies-literature
| S-EPMC4170523 | biostudies-literature
| S-EPMC6407617 | biostudies-literature
| S-EPMC6233087 | biostudies-literature
| S-EPMC4823145 | biostudies-literature
| S-EPMC6206402 | biostudies-literature