Unknown

Dataset Information

0

Noncanonical genomic imprinting in the monoamine system determines naturalistic foraging and brain-adrenal axis functions.


ABSTRACT: Noncanonical genomic imprinting can cause biased expression of one parental allele in a tissue; however, the functional relevance of such biases is unclear. To investigate ethological roles for noncanonical imprinting in dopa decarboxylase (Ddc) and tyrosine hydroxylase (Th), we use machine learning to decompose naturalistic foraging in maternal and paternal allele mutant heterozygous mice. We uncover distinct roles for the maternal versus paternal alleles on foraging, where maternal alleles affect sons while daughters are under paternal allelic control. Each parental allele controls specific action sequences reflecting decisions in naive or familiar contexts. The maternal Ddc allele is preferentially expressed in subsets of hypothalamic GABAergic neurons, while the paternal allele predominates in subsets of adrenal cells. Each Ddc allele affects distinct molecular and endocrine components of the brain-adrenal axis. Thus, monoaminergic noncanonical imprinting has ethological roles in foraging and endocrine functions and operates by affecting discrete subsets of cells.

SUBMITTER: Bonthuis PJ 

PROVIDER: S-EPMC9128000 | biostudies-literature | 2022 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Noncanonical genomic imprinting in the monoamine system determines naturalistic foraging and brain-adrenal axis functions.

Bonthuis Paul J PJ   Steinwand Susan S   Stacher Hörndli Cornelia N CN   Emery Jared J   Huang Wei-Chao WC   Kravitz Stephanie S   Ferris Elliott E   Gregg Christopher C  

Cell reports 20220301 10


Noncanonical genomic imprinting can cause biased expression of one parental allele in a tissue; however, the functional relevance of such biases is unclear. To investigate ethological roles for noncanonical imprinting in dopa decarboxylase (Ddc) and tyrosine hydroxylase (Th), we use machine learning to decompose naturalistic foraging in maternal and paternal allele mutant heterozygous mice. We uncover distinct roles for the maternal versus paternal alleles on foraging, where maternal alleles aff  ...[more]

Similar Datasets

2015-08-01 | E-GEOD-70484 | biostudies-arrayexpress
| S-EPMC8168557 | biostudies-literature
2015-08-01 | GSE70484 | GEO
| S-EPMC9770954 | biostudies-literature
| S-EPMC7883822 | biostudies-literature
| S-EPMC9067403 | biostudies-literature
| S-EPMC6593150 | biostudies-literature
| S-EPMC5589238 | biostudies-literature
| S-EPMC1287882 | biostudies-literature
| S-EPMC2945012 | biostudies-literature