Spatio-temporal solutions of a diffusive directed dynamics model with harvesting.
Ontology highlight
ABSTRACT: The study considers a directed dynamics reaction-diffusion competition model to study the density of evolution for a single species population with harvesting effect in a heterogeneous environment, where all functions are spatially distributed in time series. The dispersal dynamics describe the growth of the species, which is distributed according to the resource function with no-flux boundary conditions. The analysis investigates the existence, positivity, persistence, and stability of solutions for both time-periodic and spatial functions. The carrying capacity and the distribution function are either arbitrary or proportional. It is observed that if harvesting exceeds the growth rate, then eventually, the population drops down to extinction. Several numerical examples are considered to support the theoretical results.Supplementary information
The online version contains supplementary material available at 10.1007/s12190-022-01742-x.
SUBMITTER: Kamrujjaman M
PROVIDER: S-EPMC9208362 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA