Ontology highlight
ABSTRACT: Purpose
18F-fluorodeoxyglucose positron emission tomography (FDG-PET) is utilized for staging and treatment planning of head and neck squamous cell carcinomas (HNSCC). Some older publications on the prognostic relevance showed inconclusive results, most probably due to small study sizes. This study evaluates the prognostic and potentially predictive value of FDG-PET in a large multi-center analysis.Methods
Original analysis of individual FDG-PET and patient data from 16 international centers (8 institutional datasets, 8 public repositories) with 1104 patients. All patients received curative intent radiotherapy/chemoradiation (CRT) and pre-treatment FDG-PET imaging. Primary tumors were semi-automatically delineated for calculation of SUVmax, SUVmean, metabolic tumor volume (MTV) and total lesion glycolysis (TLG). Cox regression analyses were performed for event-free survival (EFS), overall survival (OS), loco-regional control (LRC) and freedom from distant metastases (FFDM).Results
FDG-PET parameters were associated with patient outcome in the whole cohort regarding clinical endpoints (EFS, OS, LRC, FFDM), in uni- and multivariate Cox regression analyses. Several previously published cut-off values were successfully validated. Subgroup analyses identified tumor- and human papillomavirus (HPV) specific parameters. In HPV positive oropharynx cancer (OPC) SUVmax was well suited to identify patients with excellent LRC for organ preservation. Patients with SUVmax of 14 or less were unlikely to develop loco-regional recurrence after definitive CRT. In contrast FDG PET parameters deliver only limited prognostic information in laryngeal cancer.Conclusion
FDG-PET parameters bear considerable prognostic value in HNSCC and potential predictive value in subgroups of patients, especially regarding treatment de-intensification and organ-preservation. The potential predictive value needs further validation in appropriate control groups. Further research on advanced imaging approaches including radiomics or artificial intelligence methods should implement the identified cut-off values as benchmark routine imaging parameters.
SUBMITTER: Zschaeck S
PROVIDER: S-EPMC9213669 | biostudies-literature |
REPOSITORIES: biostudies-literature