Add drop multiplexers for terahertz communications using two-wire waveguide-based plasmonic circuits
Ontology highlight
ABSTRACT: Terahertz (THz) band is considered to be the next frontier in wireless communications. The emerging THz multiplexing techniques are expected to dramatically increase the information capacity of THz communications far beyond a single channel limit. In this work, we explore the THz frequency-division multiplexing modality enabled by an add-drop multiplexer (ADM) design. Based on modular two-wire plasmonic waveguides fabricated using additive manufacturing and metallization techniques, we demonstrate four-port THz ADMs containing grating-loaded side couplers for operation at ~140 GHz carrier frequency. Particular attention is paid to the design of plasmonic waveguide Bragg gratings and directional couplers capable of splitting broadband THz light into spectral and spatial domains. Finally, we demonstrate multi/demultiplexing of THz signals with bit rates up to 6 Gbps using the developed ADMs. We believe that the proposed plasmonic circuits hold strong potential to provide robust integrated solutions for analog signal processing in the upcoming THz communications. Using 3D-printed two-wire plasmonic circuits, the authors demonstrate add-drop THz multiplexers featuring a grating-loaded side coupler design. They confirm the channel Drop, Add, and Through actions using ~6 Gbps data streams at ~140 GHz carrier frequency.
SUBMITTER: Cao Y
PROVIDER: S-EPMC9283530 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA