Development of Ag0.04ZrO2/rGO heterojunction, as an efficient visible light photocatalyst for degradation of methyl orange.
Ontology highlight
ABSTRACT: Methyl orange (MO) is mutagenic, poisonous, and carcinogenic in nature, hence, effective methods are required for its degradation. We have synthesized pure ZrO2, Ag-doped ZrO2, and Ag-doped ZrO2/rGO as hybrid photocatalysts by facile hydrothermal method. These photocatalysts were characterized by powder XRD, scanning electron microscopy, EDX, FTIR, photoluminescence, UV-Vis diffuse reflectance (DRS), and Raman spectroscopy. The photodegradation of MO (10 ppm) was studied with pure ZrO2, Ag-doped ZrO2, and Ag-doped ZrO2/rGO (10 mg/100 mL catalyst dosage) photocatalysts at 100 min irradiation time under UV-Visible light. The pH effect and catalyst dosage on photodegradation of MO was investigated. Ag0.04ZrO2/rGO photocatalyst exhibited the maximum photocatalytic degradation of MO (87%) as compared to Ag0.04ZrO2 (60%) and pure ZrO2 (26%). Reusability experiments ensured the excellent stability of photocatalyst after five consecutive experiments. To the best of our knowledge, this is the first report on the facile hydrothermal synthesis of Ag0.04ZrO2/rGO photocatalyst for photocatalytic degradation of methyl orange.
SUBMITTER: Iqbal RMA
PROVIDER: S-EPMC9296493 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA