Different Seasonal Collections of Ficus carica L. Leaves Diversely Modulate Lipid Metabolism and Adipogenesis in 3T3-L1 Adipocytes
Ontology highlight
ABSTRACT: Due to the high prevalence of obesity and type 2 diabetes, adipogenesis dysfunction and metabolic disorders are common features in the elderly population. Thus, the identification of novel compounds with anti-adipogenic and lipolytic effects is highly desirable to reduce diabetes complications. Plants represent an important source of bioactive compounds. To date, the antidiabetic potential of several traditional plants has been reported, among which Ficus carica L. is one of the most promising. Considering that plant metabolome changes in response to a number of factors including seasonality, the aim of this study was to evaluate whether Ficus carica leaves extracts collected in autumn (FCa) and spring (FCs) differently modulate lipid metabolism and adipogenesis in 3T3-L1 adipocytes. The 1H-NMR profile of the extracts showed that FCs have a higher content of caffeic acid derivatives, glucose, and sucrose than FCa. In contrast, FCa showed a higher concentration of malic acid and furanocoumarins, identified as psoralen and bergapten. In vitro testing showed that only FCa treatments were able to significantly decrease the lipid content (Ctrl vs. FCa 25 μg/mL, 50 μg/mL and 80 μg/mL; p < 0.05, p < 0.01 and p < 0.001, respectively). Furthermore, FCa treatments were able to downregulate the transcriptional pathway of adipogenesis and insulin sensitivity in 3T3-L1 adipocytes. In more detail, FCa 80 μg/mL significantly decreased the gene expression of PPARγ (p < 0.05), C/EBPα (p < 0.05), Leptin (p < 0.0001), adiponectin (p < 0.05) and GLUT4 (p < 0.01). In conclusion, this study further supports an in-depth investigation of F. carica leaves extracts as a promising source of active compounds useful for targeting obesity and diabetes.
Project description:Perfluorobutanesulfonic acid (PFBS) is used as the replacement of perfluorooctanesulfonic acid (PFOS) since 2000 because of the concern on PFOS' persistence in the environment and the bioaccumulation in animals. Accumulating evidence has shown the correlation between the exposure to perfluorinated compounds and enhanced adipogenesis. There is no report, however, of the effect of PFBS on adipogenesis. Therefore, the present work aimed to investigate the role of PFBS in adipogenesis using 3T3-L1 adipocytes. PFBS treatment for 6 days extensively promoted the differentiation of 3T3-L1 preadipocytes to adipocytes, resulting in significantly increased triglyceride levels. In particular, the treatments of PFBS at the early adipogenic differentiation period (day 0-2) were positively correlated with increased the triglyceride accumulation on day 6. PFBS treatments significantly increased the protein and mRNA levels of the master transcription factors in adipocyte differentiation; CCAAT/enhancer-binding protein ? (C/EBP?) and peroxisome proliferator-activated receptor gamma (PPAR?), along with acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS), the key proteins in lipogenesis. PFBS significantly activated the phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2) after 4-h treatment, and PFBS' effect on triglyceride was abolished by U0126, a specific MAPK/ERK kinase (MEK) inhibitor. In conclusion, PFBS increased the adipogenesis of 3T3-L1 adipocytes, in part, via MEK/ERK-dependent pathway.
Project description:Exposure to endocrine disrupting chemicals is an established risk factor for obesity. The most commonly used pesticide active ingredients have never been tested in an adipogenesis assay. We tested for the first time the potential of glyphosate, 2, 4-dichlorophenoxyacetic acid, dicamba, mesotrione, isoxaflutole, and quizalofop-p-ethyl (QpE) to induce lipid accumulation in murine 3T3-L1 adipocytes. Only QpE caused a dose-dependent statistically significant triglyceride accumulation from a concentration of 5 up to 100 µM. The QpE commercial formulation Targa Super was 100 times more cytotoxic than QpE alone. Neither the estrogen receptor antagonist ICI 182, 780 nor the glucocorticoid receptor antagonist RU486 was able to block the QpE-induced lipid accumulation. RNAseq analysis of 3T3-L1 adipocytes exposed to QpE suggests that this compound exerts its lipid accumulation effects via a peroxisome proliferator-activated receptor gamma (PPARγ)-mediated pathway, a nuclear receptor whose modulation influences lipid metabolism. QpE was further shown to be active in a PPARγ reporter gene assay at 100 µM, reaching 4% of the maximal response produced by rosiglitazone, which acts as a positive control. This indicates that lipid accumulation induced by QpE is only in part caused by PPARγ activation. The lipid accumulation capability of QpE we observe suggest that this pesticide, whose use is likely to increase in coming years may have a hitherto unsuspected obesogenic property.
Project description:Flubendiamide, a ryanoid class insecticide, is widely used in agriculture. Several insecticides have been reported to promote adipogenesis. However, the potential influence of flubendiamide on adipogenesis is largely unknown. The current study was therefore to determine the effects of flubendiamide on adipogenesis utilizing the 3T3-L1 adipocytes model. Flubendiamide treatment not only enhanced triglyceride content in 3T3-L1 adipocytes, but also increased the expression of cytosine-cytosine-adenosine-adenosine-thymidine (CCAAT)/enhancer-binding protein α and peroxisome proliferator-activated receptor gamma-γ, two important regulators of adipocyte differentiation. Moreover, the expression of the most important regulator of lipogenesis, acetyl coenzyme A carboxylase, was also increased after flubendiamide treatment. Further study revealed that 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) or A769662, two Adenosine 5'-monophosphate (AMP)-activated protein kinase α activators, subverted effects of flubendiamide on enhanced adipogenesis. Together, these results suggest that flubendiamide promotes adipogenesis via an AMPKα-mediated pathway.
Project description:BackgroundUrsolic acid (UA) is a triterpenoid compound with multiple biological functions. This compound has recently been reported to possess an anti-obesity effect; however, the mechanisms are less understood.ObjectiveAs adipogenesis plays a critical role in obesity, the present study was conducted to investigate the effect of UA on adipogenesis and mechanisms of action in 3T3-L1 preadipocytes.Methods and resultsThe 3T3-L1 preadipocytes were induced to differentiate in the presence or absence of UA for 6 days. The cells were determined for proliferation, differentiation, fat accumulation as well as the protein expressions of molecular targets that regulate or are involved in fatty acid synthesis and oxidation. The results demonstrated that ursolic acid at concentrations ranging from 2.5 µM to 10 µM dose-dependently attenuated adipogenesis, accompanied by reduced protein expression of CCAAT element binding protein ? (C/EBP?), peroxisome proliferator-activated receptor ? (PPAR?), CCAAT element binding protein ? (C/EBP?) and sterol regulatory element binding protein 1c (SREBP-1c), respectively. Ursolic acid increased the phosphorylation of acetyl-CoA carboxylase (ACC) and protein expression of carnitine palmitoyltransferase 1 (CPT1), but decreased protein expression of fatty acid synthase (FAS) and fatty acid-binding protein 4 (FABP4). Ursolic acid increased the phosphorylation of AMP-activated protein kinase (AMPK) and protein expression of (silent mating type information regulation 2, homolog) 1 (Sirt1). Further studies demonstrated that the anti-adipogenic effect of UA was reversed by the AMPK siRNA, but not by the Sirt1 inhibitor nicotinamide. Liver kinase B1 (LKB1), the upstream kinase of AMPK, was upregulated by UA. When LKB1 was silenced with siRNA or the inhibitor radicicol, the effect of UA on AMPK activation was diminished.ConclusionsUrsolic acid inhibited 3T3-L1 preadipocyte differentiation and adipogenesis through the LKB1/AMPK pathway. There is potential to develop UA into a therapeutic agent for the prevention or treatment of obesity.
Project description:Bilobalide, the only sesquiterpene compound from Ginkgo biloba leaf, exhibits various beneficial pharmaceutical activities, such as antioxidant, anti-inflammation, and protective effects for the central nervous system. Several bioactive components extracted from Ginkgo biloba extract reportedly have the potential to attenuate lipid metabolism. However, the effect of bilobalide on lipid metabolism remains unclear. In this study, we used 3T3-L1 cells as the cell model to investigate the effect of bilobalide on adipogenesis. The results showed that bilobalide inhibited 3T3-L1 preadipocyte differentiation and intracellular lipid accumulation. Quantitative real-time PCR and western blotting results indicated that several specific adipogenic transcription factors and a few important adipogenesis-related genes were significantly down regulated on both mRNA and protein levels in bilobalide treatment groups. By contrast, the expression of some lipolytic genes, such as adipose triglyceride lipase, hormone-sensitive lipase (HSL), and carnitine palmitoyltransferase-1α, were all up-regulated by bilobalide treatment, and the phosphorylation of AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase 1, and HSL were stimulated. Furthermore, bilobalide treatment partially restored AMPK activity following its blockade by compound C (dorsomorphin). These results suggested that bilobalide inhibited adipogenesis and promoted lipolysis in 3T3-L1 cells by activating the AMPK signaling pathway.
Project description:Bromodomain-containing protein 2 (Brd2) is a nuclear serine/threonine kinase involved in transcriptional regulation. In 3T3-L1 adipocytes, Brd2 normally co-represses PPAR? (peroxisome proliferator-activated receptor gamma) and inhibits adipogenesis. Here, we show that Brd2 over-expression in preadipocytes inhibits their differentiation into adipocytes, while Brd2 knockdown promotes adipogenic differentiation in vitro and forces cells to undergo adipogenesis independent of the MDI (methyisobutylxanthane, dexamethasone and insulin) induction. In this study, the two key transcription factors for adipogenesis, PPAR? and C/EBP? (CCAAT/enhancer binding protein-?) were persistently expressed during the differentiation of preadipocytes to mature adipocytes in Brd2 knockdown 3T3-L1 cells, but their expression was inhibited in cells in which Brd2 was overexpressed. To investigate the role of Brd2 in signal transduction we examined the expression of several signaling molecules involved in the regulation of gene expression and cell differentiation by immunoblotting assay. Down-regulation of Brd2 expression in 3T3-L1 cells led to a decrease in extracellular signal-regulated kinase1/2 (ERK1/2) activity and, conversely, the up-regulation of Brd2 leads to increase in ERK1/2 phosphorylation. Nevertheless, changes in Brd2 expression do not affect the activities of JNK and p38 MAPK. In addition, the phosphorylation of Rafs is not affected by changes in Brd2 expression in 3T3-L1 cells. MEK inhibitor UO126 partly restores differentiation of 3T3-L1 cells that overexpress Brd2. In conclusion, these results indicate that Brd2 regulates ERK1/2 activity independently of Raf signaling in 3T3-L1 adipocytes.
Project description:Ginkgolide C, isolated from Ginkgo biloba leaves, is a diterpene lactone derivative [corrected] reported to have multiple biological functions, from decreased platelet aggregation to ameliorating Alzheimer disease. The study aim was to evaluate the antiadipogenic effect of ginkgolide C in 3T3-L1 adipocytes. Ginkgolide C was used to treat differentiated 3T3-L1 cells. Cell supernatant was collected to assay glycerol release, and cells were lysed to measure protein and gene expression related to adipogenesis and lipolysis by western blot and real-time PCR, respectively. Ginkgolide C significantly suppressed lipid accumulation in differentiated adipocytes. It also decreased adipogenesis-related transcription factor expression, including peroxisome proliferator-activated receptor and CCAAT/enhancer-binding protein. Furthermore, ginkgolide C enhanced adipose triglyceride lipase and hormone-sensitive lipase production for lipolysis and increased phosphorylation of AMP-activated protein kinase (AMPK), resulting in decreased activity of acetyl-CoA carboxylase for fatty acid synthesis. In coculture with an AMPK inhibitor (compound C), ginkgolide C also improved activation of sirtuin 1 and phosphorylation of AMPK in differentiated 3T3-L1 cells. The results suggest that ginkgolide C is an effective flavone for increasing lipolysis and inhibiting adipogenesis in adipocytes through the activated AMPK pathway.
Project description:The dynamic ability of adipocytes in adipose tissue to store lipid in response to changes in the nutritional input and inflammatory elicitors has a major impact on human health. Previously, we established laminarin-coated beads or LCB as an inflammatory elicitor for adipocytes. However, it was not clear whether LCB inhibits lipid accumulation in adipocytes. Here, we show that LCB acts in the early stage of adipogenesis through both interleukin-1 receptor-associated kinases (IRAK) and spleen tyrosine kinase (SYK) pathways, resulting in the activation of the AMP-activated protein kinase (AMPK) and nuclear factor-κB (NF-κB) complexes, which subsequently cause cell cycle arrest, downregulation of the key transcription factors and enzymes responsible for adipogenesis, inhibition of adipogenesis, and stimulation of an inflammatory response. While LCB could effectively block lipid accumulation during the early stage of adipogenesis, it could stimulate an inflammatory response at any stage of differentiation. Additionally, our results raise a possibility that toll-like receptor 2 (TLR2) and C-type lectin domain family 7 member A (CLEC7A/Dectin-1) might be potential β-glucan receptors on the fat cells. Together, we present the mechanism of LCB, as fungal-like particles, that elicits an inflammatory response and inhibits adipogenesis at the early stage of differentiation.
Project description:Alkylglycerol monooxygenase (AGMO) is a tetrahydrobiopterin (BH4)-dependent enzyme with major expression in the liver and white adipose tissue that cleaves alkyl ether glycerolipids. The present study describes the disclosure and biological characterization of a candidate compound (Cp6), which inhibits AGMO with an IC50 of 30-100 µM and 5-20-fold preference of AGMO relative to other BH4-dependent enzymes, i.e., phenylalanine-hydroxylase and nitric oxide synthase. The viability and metabolic activity of mouse 3T3-L1 fibroblasts, HepG2 human hepatocytes and mouse RAW264.7 macrophages were not affected up to 10-fold of the IC50. However, Cp6 reversibly inhibited the differentiation of 3T3-L1 cells towards adipocytes, in which AGMO expression was upregulated upon differentiation. Cp6 reduced the accumulation of lipid droplets in adipocytes upon differentiation and in HepG2 cells exposed to free fatty acids. Cp6 also inhibited IL-4-driven differentiation of RAW264.7 macrophages towards M2-like macrophages, which serve as adipocyte progenitors in adipose tissue. Collectively, the data suggest that pharmacologic AGMO inhibition may affect lipid storage.
Project description:The phytotherapeutic protein stem bromelain (SBM) is used as an anti-obesity alternative medicine. We show at the cellular level that SBM irreversibly inhibits 3T3-L1 adipocyte differentiation by reducing adipogenic gene expression and induces apoptosis and lipolysis in mature adipocytes. At the molecular level, SBM suppressed adipogenesis by downregulating C/EBP? and PPAR? independent of C/EBP? gene expression. Moreover, mRNA levels of adipocyte fatty acid-binding protein (ap2), fatty acid synthase (FAS), lipoprotein lipase (LPL), CD36, and acetyl-CoA carboxylase (ACC) were also downregulated by SBM. Additionally, SBM reduced adiponectin expression and secretion. SBM's ability to repress PPAR? expression seems to stem from its ability to inhibit Akt and augment the TNF? pathway. The Akt-TSC2-mTORC1 pathway has recently been described for PPAR? expression in adipocytes. In our experiments, TNF? upregulation compromised cell viability of mature adipocytes (via apoptosis) and induced lipolysis. Lipolytic response was evident by downregulation of anti-lipolytic genes perilipin, phosphodiestersae-3B (PDE3B), and GTP binding protein G(i)?(1), as well as sustained expression of hormone sensitive lipase (HSL). These data indicate that SBM, together with all-trans retinoic-acid (atRA), may be a potent modulator of obesity by repressing the PPAR?-regulated adipogenesis pathway at all stages and by augmenting TNF?-induced lipolysis and apoptosis in mature adipocytes.