Unknown

Dataset Information

0

DLL4 and VCAM1 enhance the emergence of T cell-competent hematopoietic progenitors from human pluripotent stem cells.


ABSTRACT: T cells show tremendous efficacy as cellular therapeutics. However, obtaining primary T cells from human donors is expensive and variable. Pluripotent stem cells (PSCs) have the potential to provide a renewable source of T cells, but differentiating PSCs into hematopoietic progenitors with T cell potential remains an important challenge. Here, we report an efficient serum- and feeder-free system for differentiating human PSCs into hematopoietic progenitors and T cells. This fully defined approach allowed us to study the impact of individual proteins on blood emergence and differentiation. Providing DLL4 and VCAM1 during the endothelial-to-hematopoietic transition enhanced downstream progenitor T cell output by ~80-fold. These two proteins synergized to activate notch signaling in nascent hematopoietic stem and progenitor cells, and VCAM1 additionally promoted an inflammatory transcriptional program. We also established optimized medium formulations that enabled efficient and chemically defined maturation of functional CD8αβ+, CD4-, CD3+, TCRαβ+ T cells with a diverse TCR repertoire.

SUBMITTER: Michaels YS 

PROVIDER: S-EPMC9401626 | biostudies-literature | 2022 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

DLL4 and VCAM1 enhance the emergence of T cell-competent hematopoietic progenitors from human pluripotent stem cells.

Michaels Yale S YS   Edgar John M JM   Major Matthew C MC   Castle Elizabeth L EL   Zimmerman Carla C   Yin Ting T   Hagner Andrew A   Lau Charles C   Hsu Han Hsuan HH   Ibañez-Rios M Iliana MI   Durland Lauren J LJ   Knapp David J H F DJHF   Zandstra Peter W PW  

Science advances 20220824 34


T cells show tremendous efficacy as cellular therapeutics. However, obtaining primary T cells from human donors is expensive and variable. Pluripotent stem cells (PSCs) have the potential to provide a renewable source of T cells, but differentiating PSCs into hematopoietic progenitors with T cell potential remains an important challenge. Here, we report an efficient serum- and feeder-free system for differentiating human PSCs into hematopoietic progenitors and T cells. This fully defined approac  ...[more]

Similar Datasets

2022-07-02 | GSE207157 | GEO
| PRJNA853958 | ENA
| S-EPMC5473062 | biostudies-literature
| S-EPMC6200746 | biostudies-literature
| S-EPMC7757115 | biostudies-literature
| S-EPMC3535514 | biostudies-literature
| S-EPMC3254148 | biostudies-literature
| S-EPMC3888026 | biostudies-literature
| S-EPMC9777438 | biostudies-literature
| S-EPMC3045374 | biostudies-literature