High-performance thermoelectric silver selenide thin films cation exchanged from a copper selenide template.
Ontology highlight
ABSTRACT: Over the past decade, Ag2Se has attracted increasing attention due to its potentially excellent thermoelectric (TE) performance as an n-type semiconductor. It has been considered a promising alternative to Bi-Te alloys and other commonly used yet toxic and/or expensive TE materials. To optimize the TE performance of Ag2Se, recent research has focused on fabricating nanosized Ag2Se. However, synthesizing Ag2Se nanoparticles involves energy-intensive and time-consuming techniques with poor yield of final product. In this work, we report a low-cost, solution-processed approach that enables the formation of Ag2Se thin films from Cu2-x Se template films via cation exchange at room temperature. Our simple two-step method involves fabricating Cu2-x Se thin films by the thiol-amine dissolution of bulk Cu2Se, followed by soaking Cu2-x Se films in AgNO3 solution and annealing to form Ag2Se. We report an average power factor (PF) of 617 ± 82 μW m-1 K-2 and a corresponding ZT value of 0.35 at room temperature. We obtained a maximum PF of 825 μW m-1 K-2 and a ZT value of 0.46 at room temperature for our best-performing Ag2Se thin-film after soaking for 5 minutes. These high PFs have been achieved via full solution processing without hot-pressing.
SUBMITTER: Chen N
PROVIDER: S-EPMC9416934 | biostudies-literature | 2020 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA