Unknown

Dataset Information

0

Anti-infective therapy using species-specific activators of Staphylococcus aureus ClpP.


ABSTRACT: The emergence of methicillin-resistant Staphylococcus aureus isolates highlights the urgent need to develop more antibiotics. ClpP is a highly conserved protease regulated by ATPases in bacteria and in mitochondria. Aberrant activation of  bacterial ClpP is an alternative method of discovering antibiotics, while it remains difficult to develop selective  Staphylococcus aureus ClpP activators that can avoid disturbing Homo sapiens ClpP functions. Here, we use a structure-based design to identify (R)- and (S)-ZG197 as highly selective Staphylococcus aureus ClpP activators. The key structural elements in Homo sapiens ClpP, particularly W146 and its joint action with the C-terminal motif, significantly contribute to the discrimination of the activators. Our selective activators display wide antibiotic properties towards an array of multidrug-resistant staphylococcal strains in vitro, and demonstrate promising antibiotic efficacy in zebrafish and murine skin infection models. Our findings indicate that the species-specific activators of Staphylococcus aureus ClpP are exciting therapeutic agents to treat staphylococcal infections.

SUBMITTER: Wei B 

PROVIDER: S-EPMC9663597 | biostudies-literature | 2022 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Anti-infective therapy using species-specific activators of Staphylococcus aureus ClpP.

Wei Bingyan B   Zhang Tao T   Wang Pengyu P   Pan Yihui Y   Li Jiahui J   Chen Weizhong W   Zhang Min M   Ji Quanjiang Q   Wu Wenjuan W   Lan Lefu L   Gan Jianhua J   Yang Cai-Guang CG  

Nature communications 20221114 1


The emergence of methicillin-resistant Staphylococcus aureus isolates highlights the urgent need to develop more antibiotics. ClpP is a highly conserved protease regulated by ATPases in bacteria and in mitochondria. Aberrant activation of  bacterial ClpP is an alternative method of discovering antibiotics, while it remains difficult to develop selective  Staphylococcus aureus ClpP activators that can avoid disturbing Homo sapiens ClpP functions. Here, we use a structure-based design to identify  ...[more]

Similar Datasets

| S-EPMC5817083 | biostudies-literature
| S-EPMC6916429 | biostudies-literature
2014-11-01 | GSE62390 | GEO
| S-EPMC6558069 | biostudies-literature
| S-EPMC9334290 | biostudies-literature
| S-EPMC6890730 | biostudies-literature
| S-EPMC8743816 | biostudies-literature
| S-EPMC11662251 | biostudies-literature
| S-EPMC4228149 | biostudies-literature
| S-EPMC4881040 | biostudies-literature