Project description:Ribosome assembly is a process fundamental for all cellular activities. The efficiency and accuracy of the subunit assembly are tightly regulated and closely monitored. In the present work, we characterized, both compositionally and structurally, a set of in vivo 50S subunit precursors (45S), isolated from a mutant bacterial strain. Our qualitative mass spectrometry data indicate that L28, L16, L33, L36 and L35 are dramatically underrepresented in the 45S particles. This protein spectrum shows interesting similarity to many qualitatively analyzed 50S precursors from different genetic background, indicating the presence of global rate-limiting steps in the late-stage assembly of 50S subunit. Our structural data reveal two major intermediate states for the 45S particles. Consistently, both states severally lack those proteins, but they also differ in the stability of the functional centers of the 50S subunit, demonstrating that they are translationally inactive. Detailed analysis indicates that the orientation of H38 accounts for the global conformational differences in these intermediate structures, and suggests that the reorientation of H38 to its native position is rate-limiting during the late-stage assembly. Especially, H38 plays an essential role in stabilizing the central protuberance, through the interaction with the 5S rRNA, and the correctly orientated H38 is likely a prerequisite for further maturation of the 50S subunit.
Project description:The corneal endothelium maintains corneal transparency; consequently, damage to this endothelium by a number of pathological conditions results in severe vision loss. Publicly available expression databases of human tissues are useful for investigating the pathogenesis of diseases and for developing new therapeutic modalities; however, databases for ocular tissues, and especially the corneal endothelium, are poor. Here, we have generated a transcriptome dataset from the ribosomal RNA-depleted total RNA from the corneal endothelium of eyes from seven Caucasians without ocular diseases. The results of principal component analysis and correlation coefficients (ranged from 0.87 to 0.96) suggested high homogeneity of our RNA-Seq dataset among the samples, as well as sufficient amount and quality. The expression profile of tissue-specific marker genes indicated only limited, if any, contamination by other layers of the cornea, while the Smirnov-Grubbs test confirmed the absence of outlier samples. The dataset presented here should be useful for investigating the function/dysfunction of the cornea, as well as for extended transcriptome analyses integrated with expression data for non-coding RNAs.
Project description:The catalytic site of the ribosome, the peptidyl transferase centre, is located on the large (50S in bacteria) ribosomal subunit. On the basis of results obtained with small substrate analogues, isolated 50S subunits seem to be less active in peptide bond formation than 70S ribosomes by several orders of magnitude, suggesting that the reaction mechanisms on 50S subunits and 70S ribosomes may be different. Here we show that with full-size fMet-tRNA(fMet) and puromycin or C-puromycin as peptide donor and acceptor substrates, respectively, the reaction proceeds as rapidly on 50S subunits as on 70S ribosomes, indicating that the intrinsic activity of 50S subunits is not different from that of 70S ribosomes. The faster reaction on 50S subunits with fMet-tRNA(fMet), compared with oligonucleotide substrate analogues, suggests that full-size transfer RNA in the P site is important for maintaining the active conformation of the peptidyl transferase centre.
Project description:Small antibody mimetics, or alternative binding proteins (ABPs), extend and complement antibody functionality with numerous applications in research, diagnostics and therapeutics. Given the superiority of ABPs, the last two decades have witnessed development of dozens of alternative protein scaffolds (APSs) for the design of ABPs. Proteins from extremophiles with their high structural stability are especially favorable for APS design. Here, a 10X mutant of the 50S ribosomal protein L35Ae from hyperthermophilic archaea Pyrococcus horikoshii has been probed as an APS. A phage display library of L35Ae 10X was generated by randomization of its three CDR-like loop regions (repertoire size of 2×108). Two L35Ae 10X variants specific to a model target, the hen egg-white lysozyme (HEL), were isolated from the resulting library using phage display. The affinity of these variants (L4 and L7) to HEL ranges from 0.10 μM to 1.6 μM, according to surface plasmon resonance data. While L4 has 1-2 orders of magnitude lower affinity to HEL homologue, bovine α-lactalbumin (BLA), L7 is equally specific to HEL and BLA. The reference L35Ae 10X is non-specific to both HEL and BLA. L4 and L7 are more resistant to denaturation by guanidine hydrochloride compared to the reference L35Ae 10X (mid-transition concentration is higher by 0.1-0.5 M). Chemical crosslinking experiments reveal an increased propensity of L4 and L7 to multimerization. Overall, the CDR-like loop regions of L35Ae 10X represent a proper interface for generation of functional ABPs. Hence, L35Ae is shown to extend the growing family of protein scaffolds dedicated to the design of novel binding proteins.
Project description:Chloramphenicol (CAM), a well-known broad-spectrum antibiotic, inhibits peptide bond formation in bacterial ribosomes. It has been reported to affect ribosome assembly mainly through disrupting the balance of ribosomal proteins. The present study investigates the multifaceted effects of CAM on the maturation of the 50S ribosomal subunit in Escherichia coli (E. coli). Using label-free quantitative mass spectrometry (LFQ-MS), we observed that CAM treatment also leads to the upregulation of assembly factors. Further cryo-electron microscopy (cryo-EM) analysis of the ribosomal precursors characterized the CAM-treatment-accumulated pre-50S intermediates. Heterogeneous reconstruction identified 26 distinct pre-50S intermediates, which were categorized into nine main states based on their structural features. Our structural analysis highlighted that CAM severely impedes the formation of the central protuberance (CP), H89, and H58 during 50S ribosomal subunit maturation. The ELISA assay further demonstrated the direct binding of CAM to the ribosomal precursors, suggesting that the interference with 50S maturation occurs through a combination of direct and indirect mechanisms. These findings provide new insights into the mechanism of the action of CAM and provide a foundation for a better understanding of the assembly landscapes of the ribosome.
Project description:HflX is a GTP binding protein of unknown function. Based on the presence of the hflX gene in hflA operon, HflX was believed to be involved in the lytic-lysogenic decision during phage infection in Escherichia coli. We find that E. coli HflX binds 16S and 23S rRNA - the RNA components of 30S and 50S ribosomal subunits. Here, using purified ribosomal subunits, we show that HflX specifically interacts with the 50S. This finding is in line with the homology of HflX to GTPases involved in ribosome biogenesis. However, HflX-50S interaction is not limited to a specific nucleotide-bound state of the protein, and the presence of any of the nucleotides GTP/GDP/ATP/ADP is sufficient. In this respect, HflX is different from other GTPases. While E. coli HflX binds and hydrolyses both ATP and GTP, only the GTP hydrolysis activity is stimulated by 50S binding. This work uncovers interesting attributes of HflX in ribosome binding.
Project description:The comparison of 16S rRNA gene sequences is widely used to differentiate bacteria; however, this gene can lack resolution among closely related but distinct members of the same genus. This is a problem in clinical situations in those genera, such as Neisseria, where some species are associated with disease while others are not. Here, we identified and validated an alternative genetic target common to all Neisseria species which can be readily sequenced to provide an assay that rapidly and accurately discriminates among members of the genus. Ribosomal multilocus sequence typing (rMLST) using ribosomal protein genes has been shown to unambiguously identify these bacteria. The PubMLST Neisseria database (http://pubmlst.org/neisseria/) was queried to extract the 53 ribosomal protein gene sequences from 44 genomes from diverse species. Phylogenies reconstructed from these genes were examined, and a single 413-bp fragment of the 50S ribosomal protein L6 (rplF) gene was identified which produced a phylogeny that was congruent with the phylogeny reconstructed from concatenated ribosomal protein genes. Primers that enabled the amplification and direct sequencing of the rplF gene fragment were designed to validate the assay in vitro and in silico. Allele sequences were defined for the gene fragment, associated with particular species names, and stored on the PubMLST Neisseria database, providing a curated electronic resource. This approach provides an alternative to 16S rRNA gene sequencing, which can be readily replicated for other organisms for which more resolution is required, and it has potential applications in high-resolution metagenomic studies.
Project description:Bacteria harbor a number GTPases that function in the assembly of the ribosome and are essential for growth. RbgA is one of these GTPases and is required for the assembly of the 50S subunit in most bacteria. Homologs of this protein are also implicated in the assembly of the large subunit of the mitochondrial and eukaryotic ribosome. We present here the cryo-electron microscopy structure of RbgA bound to a Bacillus subtilis 50S subunit assembly intermediate (45SRbgA particle) that accumulates in cells upon RbgA depletion. Binding of RbgA at the P site of the immature particle stabilizes functionally important rRNA helices in the A and P-sites, prior to the completion of the maturation process of the subunit. The structure also reveals the location of the highly conserved N-terminal end of RbgA containing the catalytic residue Histidine 9. The derived model supports a mechanism of GTP hydrolysis, and it shows that upon interaction of RbgA with the 45SRbgA particle, Histidine 9 positions itself near the nucleotide potentially acting as the catalytic residue with minimal rearrangements. This structure represents the first visualization of the conformational changes induced by an assembly factor in a bacterial subunit intermediate.
Project description:The BipA (BPI-inducible protein A) protein is highly conserved in a large variety of bacteria and belongs to the translational GTPases, based on sequential and structural similarities. Despite its conservation in bacteria, bipA is not essential for cell growth under normal growth conditions. However, at 20°C, deletion of bipA causes not only severe growth defects but also several phenotypic changes such as capsule production, motility, and ribosome assembly, indicating that it has global regulatory properties. Our recent studies revealed that BipA is a novel ribosome-associating GTPase, whose expression is cold-shock-inducible and involved in the incorporation of the ribosomal protein (r-protein) L6. However, the precise mechanism of BipA in 50S ribosomal subunit assembly is not completely understood. In this study, to demonstrate the role of BipA in the 50S ribosomal subunit and possibly to find an interplaying partner(s), a genomic library was constructed and suppressor screening was conducted. Through screening, we found a suppressor gene, rplT, encoding r-protein L20, which is assembled at the early stage of ribosome assembly and negatively regulates its own expression at the translational level. We demonstrated that the exogenous expression of rplT restored the growth of bipA-deleted strain at low temperature by partially recovering the defects in ribosomal RNA processing and ribosome assembly. Our findings suggest that the function of BipA is pivotal for 50S ribosomal subunit biogenesis at a low temperature and imply that BipA and L20 may exert coordinated actions for proper ribosome assembly under cold-shock conditions.
Project description:Internal loops play an important role in structure and folding of RNA and in recognition of RNA by other molecules such as proteins and ligands. An understanding of internal loops with propensities to form a particular structure will help predict RNA structure, recognition, and function. The structures of internal loops 5' 1009CUAAG1013 3'/3' 1168GAAGC1164 5' and 5' 998CUAAG1002 3'/3' 1157GAAGC1153 5' from helix 40 of the large subunit rRNA in Deinococcus radiodurans and Escherichia coli, respectively, are phylogenetically conserved, suggesting functional relevance. The energetics and NMR solution structure of the loop were determined in the duplex 5' 1GGCUAAGAC9 3'/3' 18CCGAAGCUG10 5'. The internal loop forms a different structure in solution and in the crystal structures of the ribosomal subunits. In particular, the crystal structures have a bulged out adenine at the equivalent of position A15 and a reverse Hoogsteen UA pair (trans Watson-Crick/Hoogsteen UA) at the equivalent of U4 and A14, whereas the solution structure has a single hydrogen bond UA pair (cis Watson-Crick/sugar edge A15U4) between U4 and A15 and a sheared AA pair (trans Hoogsteen/sugar edge A14A5) between A5 and A14. There is cross-strand stacking between A6 and A14 (A6/A14/A15 stacking pattern) in the NMR structure. All three structures have a sheared GA pair (trans Hoogsteen/sugar edge A6G13) at the equivalent of A6 and G13. The internal loop has contacts with ribosomal protein L20 and other parts of the RNA in the crystal structures. These contacts presumably provide the free energy to rearrange the base pairing in the loop. Evidently, molecular recognition of this internal loop involves induced fit binding, which could confer several advantages. The predicted thermodynamic stability of the loop agrees with the experimental value, even though the thermodynamic model assumes a Watson-Crick UA pair.