Project description:The eukaryotic multi-subunit RNA exosome complex plays crucial roles in 3'-to-5' RNA processing and decay. Rrp6 and Ski7 are the major cofactors for the nuclear and cytoplasmic exosomes, respectively. In the cytoplasm, Ski7 helps the exosome to target mRNAs for degradation and turnover via a through-core pathway. However, the interaction between Ski7 and the exosome complex has remained unclear. The transaction of RNA substrates within the exosome is also elusive. In this work, we used single-particle cryo-electron microscopy to solve the structures of the Ski7-exosome complex in RNA-free and RNA-bound forms at resolutions of 4.2 Å and 5.8 Å, respectively. These structures reveal that the N-terminal domain of Ski7 adopts a structural arrangement and interacts with the exosome in a similar fashion to the C-terminal domain of nuclear Rrp6. Further structural analysis of exosomes with RNA substrates harboring 3' overhangs of different length suggests a switch mechanism of RNA-induced exosome activation in the through-core pathway of RNA processing.
Project description:Encapsulin is a class of nanocompartments that is unique in bacteria and archaea to confine enzymatic activities and sequester toxic reaction products. Here we present a 2.87 Å resolution cryo-EM structure of Thermotoga maritima encapsulin with heterologous protein complex loaded. It is the first successful case of expressing encapsulin and heterologous cargo protein in the insect cell system. Although we failed to reconstruct the cargo protein complex structure due to the signal interference of the capsid shell, we were able to observe some unique features of the cargo-loaded encapsulin shell, for example, an extra density at the fivefold pore that has not been reported before. These results would lead to a more complete understanding of the encapsulin cargo assembly process of T. maritima.
Project description:The membrane attack complex (MAC) is one of the immune system's first responders. Complement proteins assemble on target membranes to form pores that lyse pathogens and impact tissue homeostasis of self-cells. How MAC disrupts the membrane barrier remains unclear. Here we use electron cryo-microscopy and flicker spectroscopy to show that MAC interacts with lipid bilayers in two distinct ways. Whereas C6 and C7 associate with the outer leaflet and reduce the energy for membrane bending, C8 and C9 traverse the bilayer increasing membrane rigidity. CryoEM reconstructions reveal plasticity of the MAC pore and demonstrate how C5b6 acts as a platform, directing assembly of a giant ?-barrel whose structure is supported by a glycan scaffold. Our work provides a structural basis for understanding how ?-pore forming proteins breach the membrane and reveals a mechanism for how MAC kills pathogens and regulates cell functions.