Project description:Plasmodium falciparum is the main causative agent of malaria, a deadly disease that mainly affects children under five years old. Artemisinin-based combination therapies have been pivotal in controlling the disease, but resistance has arisen in various regions, increasing the risk of treatment failure. The non-mevalonate pathway is essential for the isoprenoid synthesis in Plasmodium and provides several under-explored targets to be used in the discovery of new antimalarials. 1-deoxy-D-xylulose-5-phosphate synthase (DXPS) is the first and rate-limiting enzyme of the pathway. Despite its importance, there are no structures available for any Plasmodium spp., due to the complex sequence which contains large regions of high disorder, making crystallisation a difficult task. In this manuscript, we use cryo-electron microscopy to solve the P. falciparum DXPS structure at a final resolution of 2.42 Å. Overall, the structure resembles other DXPS enzymes but includes a distinct N-terminal domain exclusive to the Plasmodium genus. Mutational studies show that destabilization of the cap domain interface negatively impacts protein stability and activity. Additionally, a density for the co-factor thiamine diphosphate is found in the active site. Our work highlights the potential of cryo-EM to obtain structures of P. falciparum proteins that are unfeasible by means of crystallography.
Project description:Malaria inflicts an enormous burden on global human health. The emergence of parasite resistance to front-line drugs has prompted a renewed focus on the repositioning of clinically approved drugs as potential anti-malarial therapies. Antibiotics that inhibit protein translation are promising candidates for repositioning. We have solved the cryo-EM structure of the cytoplasmic ribosome from the human malaria parasite, Plasmodium falciparum, in complex with emetine at 3.2 Å resolution. Emetine is an anti-protozoan drug used in the treatment of ameobiasis that also displays potent anti-malarial activity. Emetine interacts with the E-site of the ribosomal small subunit and shares a similar binding site with the antibiotic pactamycin, thereby delivering its therapeutic effect by blocking mRNA/tRNA translocation. As the first cryo-EM structure that visualizes an antibiotic bound to any ribosome at atomic resolution, this establishes cryo-EM as a powerful tool for screening and guiding the design of drugs that target parasite translation machinery.
Project description:Plasmodium falciparum is the parasite responsible for the most severe form of malaria. Its increasing resistance to existing antimalarials represents a major threat to human health and urges the development of new therapeutic strategies to fight malaria. The proteasome is a protease complex essential in all eukaryotes. Accordingly, inhibition of the Plasmodium 20S proteasome is highly toxic for the parasite at all of its infective and developmental stages. Proteasome inhibitors have antimalarial potential both as curative and transmission blocking agents, but in order to have therapeutic application, they must specifically target the Plasmodium proteasome and not its human counterpart. X-ray crystallography has been widely used to determine structures of yeast and mammalian 20S proteasomes with ligands. However, crystallisation of the Plasmodium proteasome is challenging, as only small quantities of the complex can be directly purified from the parasite. Furthermore, most X-ray structures of proteasome-inhibitor complexes require soaking of crystals with high concentrations of ligand, thus preventing analysis of inhibitor subunit specificity. Instead we chose to determine the Plasmodium falciparum 20S proteasome structure, in the presence of a new rationally designed parasite-specific inhibitor, by high-resolution electron cryo-microscopy and single particle analysis. The resulting map, at a resolution of about 3.6 Å, allows a direct molecular analysis of inhibitor/enzyme interactions. Here we present an overview of this structure, and how it provides valuable information that can be used to assist in the design of improved proteasome inhibitors with the potential to be developed as next-generation antimalarial drugs.
Project description:The 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) protein (Gen Bank ID AAN37254.1) from Plasmodium falciparum is a potential drug target. Therefore, it is of interest to screen DXR against a virtual library of compounds (at the ZINC database) for potential binders as possible inhibitors. This exercise helped to choose 10 top ranking molecules with ZINC00200163 [N-(2,2di methoxy ethyl)-6-methyl-2, 3, 4, 9-tetrahydro-1H-carbazol-1-amine] a having good fit (-6.43 KJ/mol binding energy) with the target protein. Thus, ZINC00200163 is identified as a potential molecule for further comprehensive characterization and in-depth analysis.
Project description:The structure of ribose 5-phosphate isomerase from Plasmodium falciparum, PFE0730c, has been determined by molecular replacement at 2.09 angstroms resolution. The enzyme, which catalyzes the isomerization reaction that interconverts ribose 5-phosphate and ribulose 5-phosphate, is a member of the pentose phosphate pathway. The P. falciparum enzyme belongs to the ribose 5-phosphate isomerase A family, Pfam family PF06562 (DUF1124), and is structurally similar to other members of the family.
Project description:β-1,3 Glucan synthase (GS) is essential for fungal cell wall biosynthesis. The GS holoenzyme comprises the glycosyltransferase FKS1 and its regulatory factor Rho1, a small GTPase. However, the mechanism by which Rho1 activates FKS1 in a GTP-dependent manner remains unclear. Here, we present two cryo-EM structures of FKS1, apo and in complex with Rho1. FKS1 adopts a cellulose synthase-like conformation. The interaction between Rho1 and FKS1 is enhanced in the presence of GTPγS. Rho1 is positioned within a pocket between the glycosyltransferase domain of FKS1 (GT domain) and the transmembrane helix spanning TM7-15. Comparison of the two structures reveals extensive conformational changes within FKS1. These alterations suggest that Rho1's GTP/GDP cycling may act as a molecular pump, promoting a dynamic transition between the resting and active states of FKS1. Notably, Rho1 triggers FKS1 conformational changes that may push the growing glucan chain into FKS1's transmembrane channel, thereby facilitating β-1,3-glucan elongation.
Project description:Humanity is burdened by malaria as millions are infected with this disease. Although advancements have been made in the treatment of malaria, optimism regarding our fight against malaria must be tempered against the problem of drug resistance in the Plasmodium parasites causing malaria. New targets are required to overcome the resistance problem. The enzymes of the mevalonate-independent pathway of isoprenoid biosynthesis are targets for the development of novel antimalarial drugs. One enzyme in this pathway, 1-deoxy-d-xylulose-5-phosphate synthase (DXS), catalyzes the conversion of 1-deoxy-d-xylulose-5-phosphate to isopentenylpyrophosphate and dimethylallyl phosphate. We demonstrate the use of a step deletion method to identify and eliminate the putative nuclear-encoded and transit peptides from full length DXS to yield a truncated, active, and soluble form of Plasmodium vivax DXS, the DXS catalytic core (DXScc).
Project description:Proton translocating rotary ATPases couple ATP hydrolysis/synthesis, which occurs in the soluble domain, with proton flow through the membrane domain via a rotation of the common central rotor complex against the surrounding peripheral stator apparatus. Here, we present a large data set of single particle cryo-electron micrograph images of the V/A type H+-rotary ATPase from the bacterium Thermus thermophilus, enabling the identification of three rotational states based on the orientation of the rotor subunit. Using masked refinement and classification with signal subtractions, we obtain homogeneous reconstructions for the whole complexes and soluble V1 domains. These reconstructions are of higher resolution than any EM map of intact rotary ATPase reported previously, providing a detailed molecular basis for how the rotary ATPase maintains structural integrity of the peripheral stator apparatus, and confirming the existence of a clear proton translocation path from both sides of the membrane.
Project description:The nonmevalonate pathway of isoprenoid biosynthesis present in Plasmodium falciparum is known to be an effective target for antimalarial drugs. The second enzyme of the nonmevalonate pathway, 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR), catalyzes the transformation of 1-deoxy-D-xylulose 5-phosphate (DXP) to 2-C-methyl-D-erythritol 4-phosphate (MEP). For crystallographic studies, DXR from the human malaria parasite P. falciparum (PfDXR) was overproduced in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method in the presence of NADPH. X-ray diffraction data to 1.85 A resolution were collected from a monoclinic crystal form belonging to space group C2 with unit-cell parameters a = 168.89, b = 59.65, c = 86.58 A, beta = 117.8 degrees. Structural analysis by molecular replacement is in progress.