Interaction between glutathione and Cu(II) in the vicinity of nucleic acids.
Ontology highlight
ABSTRACT: GSH interacts with Cu(II) in the vicinity of DNA (pH approximately 7) to form the DNA-Cu(I) complex, which can be quantified by characteristic absorption changes [e.g. delta epsilon 295 = 4516 cm-1.M-1 Cu(I)]. Under initial conditions of Cu(II)/GSH >> 1 and DNA(base)/Cu(II) >> 5, the stoichiometry is 1 DNA-Cu(I) per SH group (also for other thiols). Stopped-flow kinetics show that the complex is formed with half-lives of 1-30 s, depending on the environment, but independent of O2. DNA-Cu(I) generation is much slower, less efficient, and O2-dependent at Cu(II)/GSH < 1, or when GSH interacts with Cu(II) before the addition of DNA. Interaction of GSH with Cu(II) in the presence of DNA [at Cu(II)/GSH > 1] leads to DNA-associated transients, probably DNA-GS(-)-Cu(I); DNA-Cu(I) formation under these conditions is proposed to occur by ligand exchange: DNA-GS(-)-Cu(I)+Cu(II)<-->DNA-Cu(I)+GS(-)-Cu(II). There is no evidence for generation of free thiyl radicals (GS.) on reaction of Cu(II) with GSH. Formation of DNA-Cu(I) is, in our opinion, a primary step involved in DNA-strand cleavage by GSH in the presence of Cu(II) [Reed and Douglas (1991) Biochem. J. 275, 601-608]. In this context the question of the pro-oxidative and/or antioxidative activity of GSH, when combined with copper, is discussed. GSH also generates Cu(I) complexes with other nucleic acids. An updated order of affinities of various nucleic acids for Cu(I) is presented. Cu(I) exhibits a high preference for alternating dG-dC sequences and might even be a Z-DNA inducer. The poly(C)-Cu(I) complex seems to form a base-paired structure at pH approximately 7, as demonstrated by intercalation of ethidium bromide.
SUBMITTER: Prutz WA
PROVIDER: S-EPMC1137238 | biostudies-other | 1994 Sep
REPOSITORIES: biostudies-other
ACCESS DATA