Very-high-field n.m.r. studies of bovine lung heparan sulphate oligosaccharides produced by nitrous acid deaminative cleavage. 13C-n.m.r. study of methylene resonances: degree and positions of C-6 sulphation.
Ontology highlight
ABSTRACT: Oligosaccharides with the general structure UA-(GlcNAc-GlcUA-)m-aManOH (m = 1-5) (where UA represents uronic acid, GlcNAc N-acetylglucosamine, GlcUA glucuronic acid and aManOH anhydromannitol) were prepared from low-sulphated heparan sulphates of bovine lung origin by nitrous acid deaminative cleavage followed by reduction. Analysis of the methylene signals in the 100 MHz 13C-n.m.r. spectrum of the tetrasaccharide (m = 1) shows that, whereas the extent of C-6 O-sulphation in the GlcNAc is approx. 65%, in the aManOH [formerly a GlcNSO3 (N-sulphoglucosamine) residue in the parent heparan sulphate] it is only approx. 10%. In the higher oligosaccharides (m = 2-5) the gross extent of C-6 O-sulphation of GlcNAc residues falls systematically with increasing oligosaccharide size, whereas that in the aManOH residues remains below 10%. There is also evidence that the C-6 O-sulphation of the GlcNAc residues is confined to the GlcNAc residue adjacent to the non-reducing terminal uronic acid residue. It is therefore tentatively proposed that the GlcNAc in the sequence -GlcNSO3-UA-GlcNAc- might be a favoured substrate for the 6-O-sulphotransferase. It is concluded that in the low-sulphated heparan sulphates GlcNSO3 residues that do not occur in (GlcNSO3-UA-)n blocks tend to have a significantly smaller extent of C-6 O-sulphation than do GlcNAc residues that occur in -GlcNSO3-UA-GlcNAc-GlcUA-GlcNSO3-sequences.
SUBMITTER: Sanderson PN
PROVIDER: S-EPMC1154413 | biostudies-other | 1983 Jun
REPOSITORIES: biostudies-other
ACCESS DATA