Inhibition of carbon dioxide fixation by lead acetate in rat liver mitochondria.
Ontology highlight
ABSTRACT: These studies were undertaken to determine the mechanism by which intravenously administered lead salts inhibit hepatic gluconeogenesis. Within 1 h after the intravenous administration of lead acetate (10 mg), there is 97% inhibition of CO2 fixation in isolated rat liver mitochondria. This effect is concentration-dependent. The induction of phosphoenolpyruvate carboxykinase activity observed with starvation was also inhibited by intravenously administered lead acetate, but the activities of pyruvate kinase, glucose 6-phosphate dehydrogenase and pyruvate carboxylase were unaffected, as was the oxidation of palmitate and palmitoyl-CoA by mitochondria from Pb2+-treated animals. The addition of reduced glutathione to mitochondria from Pb2+-treated animals had no effect on the inhibited CO2 fixation. ATP concentrations in mitochondria from Pb2+-treated animals are decreased and the dose-response relationships for the effect of Pb2+ on CO2 fixation and ATP concentrations correspond. We conclude that the decrease in mitochondrial ATP in Pb2+-treated animals is probably responsible for the marked inhibition ov CO2 fixation, and hence the impairment of gluconeogenesis from alanine, lactate and pyruvate observed by others.
SUBMITTER: Amatruda JM
PROVIDER: S-EPMC1164958 | biostudies-other | 1977 Jul
REPOSITORIES: biostudies-other
ACCESS DATA