ABSTRACT: 1. Preparations of heparin and heparan sulphate were degraded with HNO2. The resulting disaccharides were isolated by gel chromatography, reduced with either NaBH4 or NaB3H4 and were then fractionated into non-sulphated, monosulphated and disulphated species by ion-exchange chromatography or by paper electrophoresis. The non-sulphated disaccharides were separated into two, and the monosulphated disaccharides into three, components by paper chromatography. 2. The uronic acid moieties of the various non- and mono-sulphated disaccharides were identified by means of radioactive labels selectively introduced into uronic acid residues (3H and 14C in D-glucuronic acid, 14C only in L-iduronic acid units) during biosynthesis of the polysaccharide starting material. Labelled uronic acids were also identified by paper chromatography, after liberation from disaccharides by acid hydrolysis or by glucuronidase digestion. Similar procedures, applied to disaccharides treated with NaB3H4, indicated 2,5-anhydro-D-mannitol as reducing terminal unit. On the basis of these results, and the known positions and configurations of the glycosidic linkages in heparin, the two non-sulphated disaccharides were identified as 4-O-(beta-D-glucopyranosyluronic acid)-2,5-anhydro-D-mannitol and 4-O-(alpha-L-idopyranosyluronic acid)-2,5-anhydro-D-mannitol. 3. The three monosulphated [1-3H]anhydromannitol-labelled disaccharides were subjected to Smith degradation or to digestion with homogenates of human skin fibroblasts, and the products were analysed by paper electrophoresis. The results, along with the 1H n.m.r. spectra of the corresponding unlabelled disaccharides, permitted the allocation of O-sulphate groups to various positions in the disaccharides. These were thus identified as 4-O-(beta-D-glucopyranosyl-uronic acid)-2,5-anhydro-D-mannitol 6-sulphate, 4-O-(alpha-L-idopyranosyluronic acid)-2,5-anhydro-D-mannitol 6-sulphate and 4-O-(alpha-L-idopyranosyluronic acid 2-sulphate)-2,5-anhydro-D-mannitol. The last-mentioned disaccharide was found to be a poor substrate for the iduronate sulphatase of human skin fibroblasts, as compared with the disulphated species, 4-O-(alpha-L-idopyranosyluronic acid 2-sulphate)-2,5-anhydro-D-mannitol 6-sulphate. 4. The identified [1-3H]anhydromannitol-labelled disaccharides were used as reference standards in a study of the disaccharide composition of heparins and heparan sulphates. Low N-sulphate contents, most pronounced in the heparin sulphates, were associated with high ratios of mono-O-sulphated/di-O-sulphated (N-sulphated) disaccharide units, and in addition, with relatively large amounts of 2-sulphated L-iduronic acid residues bound to C-4 of N-sulpho-D-glucosamine units lacking O-sulphate substituents.