The Smk1p MAP kinase negatively regulates Gsc2p, a 1,3-beta-glucan synthase, during spore wall morphogenesis in Saccharomyces cerevisiae.
Ontology highlight
ABSTRACT: Spore formation in Saccharomyces cerevisiae involves the sequential deposition of multiple spore wall layers between the prospore membranes that surround each meiotic product. The Smk1p mitogen-activated protein (MAP) kinase plays a critical role in spore formation, but the proteins that interact with Smk1p to regulate spore morphogenesis have not been described. Using mass spectrometry, we identify Gsc2p as a Smk1p-associated protein. Gsc2p is a 1,3-beta-glucan synthase subunit involved in synthesizing an inner spore wall layer. We find that 1,3-beta-glucan synthase activity is elevated in smk1 mutants, suggesting that SMK1 negatively regulates GSC2. Although deposition of the two inner spore wall layers is normal in smk1 mutants, deposition of the outer layers is aberrant. However, eliminating GSC2 activity restores normal deposition of the third spore wall layer in smk1 mutants, indicating that negative regulation of GSC2 by SMK1 is important for spore wall deposition. Our findings suggest a model for the coordination of spore wall layer deposition in which Smk1p facilitates the transition between early and late phases of spore wall deposition by inhibiting a spore wall-synthesizing enzyme important for early phases of spore wall deposition.
SUBMITTER: Huang LS
PROVIDER: S-EPMC1194906 | biostudies-other | 2005 Aug
REPOSITORIES: biostudies-other
ACCESS DATA