Unknown

Dataset Information

0

Human CPR (cell cycle progression restoration) genes impart a Far- phenotype on yeast cells.


ABSTRACT: Regulated cell cycle progression depends on the proper integration of growth control pathways with the basic cell cycle machinery. While many of the central molecules such as cyclins, CDKs, and CKIs are known, and many of the kinases and phosphatases that modify the CDKs have been identified, little is known about the additional layers of regulation that impinge upon these molecules. To identify new regulators of cell proliferation, we have selected for human and yeast cDNAs that when overexpressed were capable of specifically overcoming G1 arrest signals from the cell cycle branch of the mating pheromone pathway, while still maintaining the integrity of the transcriptional induction branch. We have identified 13 human CPR (cell cycle progression restoration) genes and 11 yeast OPY (overproduction-induced pheromone-resistant yeast) genes that specifically block the G1 arrest by mating pheromone. The CPR genes represent a variety of biochemical functions including a new cyclin, a tumor suppressor binding protein, chaperones, transcription factors, translation factors, RNA-binding proteins, as well as novel proteins. Several CPR genes require individual CLNs to promote pheromone resistance and those that require CLN3 increase the basal levels of Cln3 protein. Moreover, several of the yeast OPY genes have overlapping functions with the human CPR genes, indicating a possible conservation of roles.

SUBMITTER: Edwards MC 

PROVIDER: S-EPMC1208234 | biostudies-other | 1997 Nov

REPOSITORIES: biostudies-other

altmetric image

Publications

Human CPR (cell cycle progression restoration) genes impart a Far- phenotype on yeast cells.

Edwards M C MC   Liegeois N N   Horecka J J   DePinho R A RA   Sprague G F GF   Tyers M M   Elledge S J SJ  

Genetics 19971101 3


Regulated cell cycle progression depends on the proper integration of growth control pathways with the basic cell cycle machinery. While many of the central molecules such as cyclins, CDKs, and CKIs are known, and many of the kinases and phosphatases that modify the CDKs have been identified, little is known about the additional layers of regulation that impinge upon these molecules. To identify new regulators of cell proliferation, we have selected for human and yeast cDNAs that when overexpres  ...[more]

Similar Datasets

| S-EPMC6420891 | biostudies-literature
| S-EPMC6085122 | biostudies-literature
| S-EPMC551471 | biostudies-literature
| S-EPMC3771362 | biostudies-literature
| S-EPMC3276143 | biostudies-literature
| S-EPMC3734186 | biostudies-literature
| S-EPMC4875507 | biostudies-literature
| S-EPMC5007584 | biostudies-literature
| S-EPMC7565464 | biostudies-literature
| S-EPMC3046126 | biostudies-literature