Differential regulation of extracellular signal-regulated protein kinase 1 and Jun N-terminal kinase 1 by Ca2+ and protein kinase C in endothelin-stimulated Rat-1 cells.
Ontology highlight
ABSTRACT: The extracellular signal-regulated protein kinase (ERK) and Jun N-terminal kinase (JNK) signalling cascades transduce signals from the cell cytoplasm to the nucleus, where they regulate gene expression. The activation of ERK1 by lysophosphatidic acid (LPA) and endothelin 1 (Et-1) was compared in Rat-1 cells. Both stimulated DNA synthesis to a similar degree but, in contrast with LPA, Et-1 did not stimulate sustained ERK1 activation, a signal that is thought to be important for the proliferation of fibroblasts. Et-1, but not LPA, was able to activate JNK1; pharmacological analysis revealed that the same EtA receptor mediates DNA synthesis, ERK1 and JNK1 activation. However, activation of JNK1 required higher concentrations of Et-1 than was required for stimulation of ERK1 or DNA synthesis. Signalling to ERK1 and JNK1 was partly inhibited by pertussis toxin, suggesting that both pathways are regulated in part by Gi or G0 proteins. Activation of JNK1 by Et-1 lagged behind ERK1 activation but was not dependent on it because PD98059, an inhibitor of mitogen-activated protein kinase (or ERK) kinase, was without effect on JNK1 activation. In contrast with recent studies, activation of protein kinase C (PKC) or Ca2+ fluxes inhibited activation of JNK1 but not ERK1; furthermore inhibition of PKC or sequestration of Ca2+ potentiated JNK1 activation by Et-1 but not by anisomycin, and again had little effect on ERK1 activation. These results demonstrate that the same G-protein-coupled receptor can activate both the ERK and JNK signal pathways but the two kinase cascades seem to be separate, parallel pathways that are differentially regulated by PKC and Ca2+. The results are discussed in terms of the role of ERK and JNK in proliferative signalling.
SUBMITTER: Cadwallader K
PROVIDER: S-EPMC1218137 | biostudies-other | 1997 Feb
REPOSITORIES: biostudies-other
ACCESS DATA