Insulin stimulates the tyrosine dephosphorylation of docking protein p130cas (Crk-associated substrate), promoting the switch of the adaptor protein crk from p130cas to newly phosphorylated insulin receptor substrate-1.
Ontology highlight
ABSTRACT: The docking protein p130(cas) (Crk-associated substrate) forms a stable complex with the adaptor protein CrkII in a tyrosine-phosphorylation-dependent manner. Insulin-induced tyrosine phosphorylation of insulin receptor substrates results in the redistribution of CrkII between p130(cas) and insulin receptor substrate-1. A decrease in the association between CrkII and p130(cas) in response to insulin stimulation was detected in CHO cells stably expressing insulin receptor or insulin receptor substrate-1, and in L6 rat myoblasts. Along with the decrease in the association of CrkII with p130(cas), the amount of tyrosine-phosphorylated insulin receptor substrate-1 co-precipitated with CrkII increased in all cell types studied. The insulin-induced decrease in the CrkII-p130(cas) association was further confirmed by Far Western Blot analysis with the Src homology 2 (SH2) domain of CrkII. Insulin regulates the association of CrkII with p130(cas) by tyrosine dephosphorylation of p130(cas) and co-ordinated tyrosine phosphorylation of insulin receptor substrate-1. Tyrosine-phosphorylated insulin receptor substrate-1 serves as a docking protein for multiple adaptor proteins and competes with p130(cas) for CrkII.
SUBMITTER: Sorokin A
PROVIDER: S-EPMC1219728 | biostudies-other | 1998 Sep
REPOSITORIES: biostudies-other
ACCESS DATA