Src-family tyrosine kinases, phosphoinositide 3-kinase and Gab1 regulate extracellular signal-regulated kinase 1 activation induced by the type A endothelin-1 G-protein-coupled receptor.
Ontology highlight
ABSTRACT: The multisubstrate docking protein, growth-factor-receptor-bound protein 2-associated binder 1 (Gab1), which is phosphorylated on tyrosine residues following activation of receptor tyrosine kinases and cytokine receptors, regulates cell proliferation, survival and epithelial morphogenesis. Gab1 is also tyrosine phosphorylated following activation of G-protein-coupled receptors (GPCRs) where its function is poorly understood. To elucidate the role of Gab1 in GPCR signalling, we investigated the mechanism by which the type A endothelin-1 (ET-1) GPCR induced tyrosine phosphorylation of Gab1. Tyrosine phosphorylation of Gab1 induced by endothelin-1 was inhibited by PP1, a pharmacological inhibitor of Src-family tyrosine kinases. ET-1-induced Gab1 tyrosine phosphorylation was also inhibited by LY294002, which inhibits phosphoinositide 3-kinase (PI 3-kinase) enzymes. Inhibition of Src-family tyrosine kinases or PI 3-kinase also inhibited ET-1-induced activation of the mitogen activated protein kinase family member, extracellular signal-regulated kinase (ERK) 1. Thus we determined whether Gab1 regulated ET-1-induced ERK1 activation. Overexpression of wild-type Gab1 potentiated ET-1-induced activation of ERK1. Structure-function analyses of Gab1 indicated that mutant forms of Gab1 that do not bind the Src homology (SH) 2 domains of the p85 adapter subunit of PI 3-kinase or the SH2-domain-containing protein tyrosine phosphatase 2 (SHP-2) were impaired in their ability to potentiate ET-1-induced ERK1 activation. Taken together, our data indicate that PI 3-kinase and Src-family tyrosine kinases regulate ET-1-induced Gab1 tyrosine phosphorylation, which, in turn, induces ERK1 activation via PI 3-kinase- and SHP-2-dependent pathways.
SUBMITTER: Bisotto S
PROVIDER: S-EPMC1222204 | biostudies-other | 2001 Nov
REPOSITORIES: biostudies-other
ACCESS DATA