Suppression of integrin activation by the membrane-distal sequence of the integrin alphaIIb cytoplasmic tail.
Ontology highlight
ABSTRACT: Integrin cytoplasmic tails regulate integrin activation including an increase in integrin affinity for ligands. Although there is ample evidence that the membrane-proximal regions of the alpha and beta tails interact with each other to maintain integrins in a low-affinity state, little is known about the role of the membrane-distal region of the alpha tail in regulation of integrin activation. We report a critical sequence for regulation of integrin activation in the membrane-distal region of the alphaIIb tail. Alanine substitution of the RPP residues in the alphaIIb tail rendered alphaIIbbeta3 constitutively active in a metabolic energy-dependent manner. Although an alphaIIb/alpha6Abeta3 chimaeric integrin, in which the alphaIIb tail was replaced by the alpha6A tail, was in an energy-dependent active state to bind soluble ligands, introduction of the RPP sequence into the alpha6A tail inhibited binding of an activation-dependent antibody PAC1. In alphaIIb/alpha6Abeta3, deleting the TSDA sequence from the alpha6A tail or single amino acid substitutions of the TSDA residues inhibited alphaIIb/alpha6Abeta3 activation and replacing the membrane-distal region of the alphaIIb tail with TSDA rendered alphaIIbbeta3 active, suggesting a stimulatory role of TSDA in energy-dependent integrin activation. However, adding TSDA to the alphaIIb tail containing the RPP sequence of the membrane-distal region failed to activate alphaIIbbeta3. These results suggest that the RPP sequence after the GFFKR motif of the alphaIIb tail suppresses energy-dependent alphaIIbbeta3 activation. These findings provide a molecular basis for the regulation of energy-dependent integrin activation by alpha subunit tails.
SUBMITTER: Yamanouchi J
PROVIDER: S-EPMC1224082 | biostudies-other | 2004 Apr
REPOSITORIES: biostudies-other
ACCESS DATA