Molecular modeling of a T-cell receptor bound to a major histocompatibility complex molecule: implications for T-cell recognition.
Ontology highlight
ABSTRACT: The main functions of the T-cell receptor (TCR) involve its specific interaction with short and linear antigenic peptides bound to the major histocompatibility complex (MHC) molecules. In the absence of a 3D structure for TCR and for the TCR/peptide/MHC complex, several attempts to characterize the structural components of the TCR/peptide/MHC interaction have been made. However, this subject is still troublesome. In this paper a computer-based 3D model for a TCR/peptide/MHC complex (5C.C7/moth cytochrome c [MCC] peptide 93-103/I-Ek) was obtained. The complex surface shows a high complementarity between the 5C.C7 structure and the peptide/I-Ek molecule. The mapping of residues involved in the TCR/peptide/MHC interaction shows close agreement with mutational experiments (Jorgensen JL, Reay PA, Ehrich EW, Davis MM, 1992b, Annu Rev Immunol 10:835-873). Moreover, the results are consistent with a recent variability analysis of TCR sequences using three variability indexes (Almagro JC, Zenteno-Cuevas R, Vargas-Madrazo E, Lara-Ochoa F, 1995b, Int J Pept Protein Res 45:180-186). Accordingly, the 3D model of the 5C.C7/MCC peptide 93-103/I-Ek complex provides a framework to generate testable hypotheses about TCR recognition. Thus, starting from this model, the role played by each loop that forms the peptide/MHC binding site of the TCR is discussed.
SUBMITTER: Almagro JC
PROVIDER: S-EPMC2143220 | biostudies-other | 1995 Sep
REPOSITORIES: biostudies-other
ACCESS DATA