Muscle-specific splicing enhancers regulate inclusion of the cardiac troponin T alternative exon in embryonic skeletal muscle.
Ontology highlight
ABSTRACT: The alternative exon 5 of the striated muscle-specific cardiac troponin T (cTNT) gene is included in mRNA from embryonic skeletal and cardiac muscle and excluded in mRNA from the adult. The embryonic splicing pattern is reproduced in primary skeletal muscle cultures for both the endogenous gene and transiently transfected minigenes, whereas in nonmuscle cell lines, minigenes express a default exon skipping pattern. Using this experimental system, we previously showed that a purine-rich splicing enhancer in the alternative exon functions as a constitutive splicing element but not as a target for factors regulating cell-specific splicing. In this study, we identify four intron elements, one located upstream,and three located downstream of the alternative exon, which act in a positive manner to mediate the embryonic splicing pattern of exon inclusion. Synergistic interactions between at least three of the four elements are necessary and sufficient to regulate splicing of a heterologous alternative exon and heterologous splice sites. Mutations in these elements prevent activation of exon inclusion in muscle cells but do not affect the default level of exon inclusion in nonmuscle cells. Therefore, these elements function as muscle-specific splicing enhancers (MSEs) and are the first muscle-specific positive-acting splicing elements to be described. One MSE located downstream from the alternative exon is conserved in the rat and chicken cTNT genes. A related sequence is found in a third muscle-specific gene, that encoding skeletal troponin T, downstream from an alternative exon with a developmental pattern of alternative splicing similar to that of rat and chicken cTNT. Therefore, the MSEs identified in the cTNT gene may play a role in developmentally regulated alternative splicing in a number of different genes.
SUBMITTER: Ryan KJ
PROVIDER: S-EPMC231397 | biostudies-other | 1996 Aug
REPOSITORIES: biostudies-other
ACCESS DATA