An interleukin-1beta (IL-1beta) single-nucleotide polymorphism at position 3954 and red complex periodontopathogens independently and additively modulate the levels of IL-1beta in diseased periodontal tissues.
Ontology highlight
ABSTRACT: Inflammatory cytokines such as interleukin-1beta (IL-1beta) are involved in the pathogenesis of periodontal diseases. A high individual variation in the levels of IL-1beta mRNA has been verified, which is possibly determined by genetic polymorphisms and/or by the presence of periodontopathogens such as Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, and Aggregatibacter actinomycetemcomitans. In this study, we investigated the role of an IL-1beta promoter single-nucleotide polymorphism at position 3954 [IL-1beta(3954) SNP] and the presence of the periodontopathogens in the determination of the IL-1beta levels in the periodontal tissues of nonsmoking chronic periodontitis (CP) patients (n = 117) and control (C) subjects (n = 175) and the possible correlations with the clinical parameters of the disease. IL-1beta(3954) SNP was investigated by restriction fragment length polymorphism, while the IL-1beta levels and the presence of the periodontopathogens were determined by real-time PCR. Similar frequencies of IL-1beta(3954) SNP were found in the C and CP groups, in spite of a trend toward a higher incidence of T alleles in the CP group. The IL-1beta(3954) SNP CT and TT genotypes, as well as P. gingivalis, T. forsythia, and T. denticola, were associated with higher IL-1beta levels and with higher values of the clinical parameters of disease severity. Concomitant analyses demonstrate that IL-1beta(3954) and the red complex periodontopathogens were found to independently and additively modulate the levels of IL-1beta in periodontal tissues. Similarly, the concurrent presence of both factors was associated with increased scores of disease severity. IL-1beta(3954) genotypes and red complex periodontopathogens, individually and additively, modulate the levels of IL-1beta in the diseased tissues of nonsmoking CP patients and, consequently, are potentially involved in the determination of the disease outcome.
SUBMITTER: Ferreira SB
PROVIDER: S-EPMC2493201 | biostudies-other | 2008 Aug
REPOSITORIES: biostudies-other
ACCESS DATA