Computational analysis of determinants of dopamine (DA) dysfunction in DA nerve terminals.
Ontology highlight
ABSTRACT: Dopamine signaling is involved in a number of brain pathways, and its disruption has been suggested to be involved in the several disease states, including Parkinson's disease (PD), schizophrenia, and attention deficit hyperactivity disorder (ADHD). It has been hypothesized that altered storage, release, and reuptake of dopamine contributes to both the hypo- and hyperdopaminergic states that exist in various diseases. Here, we use our recently described mathematical model of dopamine metabolism, combined with a comprehensive Monte Carlo simulation analysis, to identify key determinants of dopamine metabolism associated with the dysregulation of dopamine homeostasis that may contribute to the pathogenesis of dopamine-based disorders. Our model reveals that the dopamine transporter (DAT), the vesicular monoamine transporter (VMAT2), and the enzyme monoamine oxidase (MAO) are the most influential components controlling the synaptic level of dopamine and the formation of toxic intracellular metabolites. The results are consistent with experimental observations and point to metabolic processes and combinations of processes that may be biochemical drivers of dopamine neuron degeneration. Since many of the identified components can be targeted therapeutically, the model may aid in the design of combined therapeutic regimens aimed at restoring proper dopamine signaling with toxic intermediates under control.
SUBMITTER: Qi Z
PROVIDER: S-EPMC2759407 | biostudies-other | 2009 Dec
REPOSITORIES: biostudies-other
ACCESS DATA