Conversion of mammalian tRNA 3' processing endoribonuclease to four-base-recognizing RNA cutters.
Ontology highlight
ABSTRACT: The spermidine-dependent, sequence-specific endoribonuclease (RNase 65) activities in mammalian cell extracts require both protein and 3' truncated tRNA, species of which direct their substrate sequence specificity. Computer analysis for searching possible base pairing between substrate RNAs and their corresponding 3' truncated tRNA, suggested a unified model for substrate recognition mechanism, in which a four-nucleotide (nt) sequence in the target tRNAs 1 nt upstream of their cleavage site, base pairs with the 5' terminal 4 nt sequence of their corresponding 3' truncated tRNA. This model was supported by experiments with several RNA substrates containing a substituted nucleotide in the target 4 nt sequence. In this model, the tRNA substrates and their corresponding 3' truncated tRNA form a complex resembling a 5' processed tRNA precursor containing a 3' trailer, suggesting that the protein component of RNase 65 is identical to tRNA 3' processing endoribonuclease (3' tRNase). Actually, 3' tRNase purified from pig liver cleaved the target RNAs at the expected sites only in the presence of their corresponding 3' truncated tRNA. These results show that the 3' tRNase can be converted to 4 nt specific RNA cutters using the 3' truncated tRNAs.
SUBMITTER: Nashimoto M
PROVIDER: S-EPMC307260 | biostudies-other | 1995 Sep
REPOSITORIES: biostudies-other
ACCESS DATA