Unknown

Dataset Information

0

Loss of epigenetic modification driven by the Foxp3 transcription factor leads to regulatory T cell insufficiency.


ABSTRACT: Regulatory T (Treg) cells, driven by the Foxp3 transcription factor, are responsible for limiting autoimmunity and chronic inflammation. We showed that a well-characterized Foxp3(gfp) reporter mouse, which expresses an N-terminal GFP-Foxp3 fusion protein, is a hypomorph that causes profoundly accelerated autoimmune diabetes on a NOD background. Although natural Treg cell development and in vitro function are not markedly altered in Foxp3(gfp) NOD and C57BL/6 mice, Treg cell function in inflammatory environments was perturbed and TGF-?-induced Treg cell development was reduced. Foxp3(gfp) was unable to interact with the histone acetyltransferase Tip60, the histone deacetylase HDAC7, and the Ikaros family zinc finger 4, Eos, which led to reduced Foxp3 acetylation and enhanced K48-linked polyubiquitylation. Collectively this results in an altered transcriptional landscape and reduced Foxp3-mediated gene repression, notably at the hallmark IL-2 promoter. Loss of controlled Foxp3-driven epigenetic modification leads to Treg cell insufficiency that enables autoimmunity in susceptible environments.

SUBMITTER: Bettini ML 

PROVIDER: S-EPMC3361541 | biostudies-other | 2012 May

REPOSITORIES: biostudies-other

altmetric image

Publications

Loss of epigenetic modification driven by the Foxp3 transcription factor leads to regulatory T cell insufficiency.

Bettini Matthew L ML   Pan Fan F   Bettini Maria M   Finkelstein David D   Rehg Jerold E JE   Floess Stefan S   Bell Bryan D BD   Ziegler Steven F SF   Huehn Jochen J   Pardoll Drew M DM   Vignali Dario A A DA  

Immunity 20120510 5


Regulatory T (Treg) cells, driven by the Foxp3 transcription factor, are responsible for limiting autoimmunity and chronic inflammation. We showed that a well-characterized Foxp3(gfp) reporter mouse, which expresses an N-terminal GFP-Foxp3 fusion protein, is a hypomorph that causes profoundly accelerated autoimmune diabetes on a NOD background. Although natural Treg cell development and in vitro function are not markedly altered in Foxp3(gfp) NOD and C57BL/6 mice, Treg cell function in inflammat  ...[more]

Similar Datasets

2012-12-07 | E-GEOD-35164 | biostudies-arrayexpress
2012-12-07 | GSE35164 | GEO
| S-EPMC3448012 | biostudies-literature
2020-11-12 | GSE154680 | GEO
| S-EPMC7534899 | biostudies-literature
| S-EPMC3871978 | biostudies-literature
| S-EPMC2764816 | biostudies-literature
| S-EPMC4112080 | biostudies-literature
| S-EPMC2729804 | biostudies-literature
| S-EPMC5641083 | biostudies-literature