Unknown

Dataset Information

0

Size-based hydrodynamic rare tumor cell separation in curved microfluidic channels.


ABSTRACT: In this work, we propose a rapid and continuous rare tumor cell separation based on hydrodynamic effects in a label-free manner. The competition between the inertial lift force and Dean drag force inside a double spiral microchannel results in the size-based cell separation of large tumor cells and small blood cells. The mechanism of hydrodynamic separation in curved microchannel was investigated by a numerical model. Experiments with binary mixture of 5- and 15-μm-diameter polystyrene particles using the double spiral channel showed a separation purity of more than 95% at the flow rate above 30 ml/h. High throughput (2.5 × 10(8) cells/min) and efficient cell separation (more than 90%) of spiked HeLa cells and 20 × diluted blood cells was also achieved by the double spiral channel.

SUBMITTER: Sun J 

PROVIDER: S-EPMC3555910 | biostudies-other | 2013

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC3555970 | biostudies-other
| S-EPMC3743538 | biostudies-literature
| S-EPMC5069649 | biostudies-literature
| S-EPMC2807449 | biostudies-other
| S-EPMC5446400 | biostudies-literature
| S-EPMC7469923 | biostudies-literature
| S-EPMC7643107 | biostudies-literature
| S-EPMC6602928 | biostudies-literature
| S-EPMC5446298 | biostudies-literature
| S-EPMC3171489 | biostudies-other