Direct detection of a sulfonate ester genotoxic impurity by atmospheric-pressure thermal desorption-extractive electrospray-mass spectrometry.
Ontology highlight
ABSTRACT: A direct, ambient ionization method has been developed using atmospheric pressure thermal desorption-extractive electrospray-mass spectrometry (AP/TD-EESI-MS) for the detection of the genotoxic impurity (GTI) methyl p-toluenesulfonate (MTS) in a surrogate pharmaceutical matrix. A custom-made thermal desorption probe was used to the desorb and vaporize MTS from the solid state, by rapid heating to 200 °C then cooling to ambient temperature, with a cycle time of 6 min. The detection of MTS using EESI with a sodium acetate doped solvent to generate the [MTS+Na](+) adduct ion provided a significant sensitivity enhancement relative to the [M+H](+) ion generated using a 0.1% formic acid solvent modifier. The MTS detection limit is over an order of magnitude below the long-term daily threshold of toxicological concern (TTC) of 1.5 μg/g and the potential for quantitative analysis has been determined using starch as a surrogate active pharmaceutical ingredient (API).
SUBMITTER: Devenport NA
PROVIDER: S-EPMC3949410 | biostudies-other | 2013 Jul
REPOSITORIES: biostudies-other
ACCESS DATA