Unknown

Dataset Information

0

Single molecule conformational memory extraction: p5ab RNA hairpin.


ABSTRACT: Extracting kinetic models from single molecule data is an important route to mechanistic insight in biophysics, chemistry, and biology. Data collected from force spectroscopy can probe discrete hops of a single molecule between different conformational states. Model extraction from such data is a challenging inverse problem because single molecule data are noisy and rich in structure. Standard modeling methods normally assume (i) a prespecified number of discrete states and (ii) that transitions between states are Markovian. The data set is then fit to this predetermined model to find a handful of rates describing the transitions between states. We show that it is unnecessary to assume either (i) or (ii) and focus our analysis on the zipping/unzipping transitions of an RNA hairpin. The key is in starting with a very broad class of non-Markov models in order to let the data guide us toward the best model from this very broad class. Our method suggests that there exists a folding intermediate for the P5ab RNA hairpin whose zipping/unzipping is monitored by force spectroscopy experiments. This intermediate would not have been resolved if a Markov model had been assumed from the onset. We compare the merits of our method with those of others.

SUBMITTER: Presse S 

PROVIDER: S-EPMC4064692 | biostudies-other | 2014 Jun

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC3536296 | biostudies-literature
| S-EPMC8396532 | biostudies-literature
| S-EPMC1705750 | biostudies-literature
| S-EPMC11000223 | biostudies-literature
| S-EPMC5903582 | biostudies-literature
| S-EPMC4207534 | biostudies-literature
| S-EPMC10025942 | biostudies-literature
| S-EPMC7026608 | biostudies-literature
| S-EPMC4894822 | biostudies-literature
| S-EPMC1937519 | biostudies-other