Unknown

Dataset Information

0

Antifibrotic effects of KS370G, a caffeamide derivative, in renal ischemia-reperfusion injured mice and renal tubular epithelial cells.


ABSTRACT: Accumulating evidence suggests that renal tubulointerstitial fibrosis is a main cause of end-stage renal disease. Clinically, there are no beneficial treatments that can effectively reverse the progressive loss of renal functions. Caffeic acid phenethyl ester is a natural phenolic antifibrotic agent, but rapid decomposition by an esterase leads to its low bioavailability. In this study, we evaluated the effects of KS370G, a caffeic acid phenylethyl amide, on murine renal fibrosis induced by unilateral renal ischemia-reperfusion injury (IRI) and in TGF-β₁ stimulated renal tubular epithelial cells (NRK52E and HK-2). In the animal model, renal fibrosis was evaluated at 14 days post-operation. Immediately following the operation, KS370G (10 mg/kg) was administered by oral gavage once a day. Our results show that KS370G markedly attenuates collagen deposition and inhibits an IRI-induced increase of fibronectin, vimentin, α-SMA and TGF-β₁ expression and plasma TGF-β₁ levels in the mouse kidney. Furthermore, KS370G reverses TGF-β1-induced downregulation of E-cadherin and upregulation of α-SMA and also decreases the expression of fibronectin, collagen I and PAI-1 and inhibits TGF-β₁-induced phosphorylation of Smad2/3. These findings show the beneficial effects of KS370G on renal fibrosis in vivo and in vitro with the possible mechanism being the inhibition of the Smad2/3 signaling pathway.

SUBMITTER: Chuang ST 

PROVIDER: S-EPMC4108915 | biostudies-other | 2014

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC7478463 | biostudies-literature
| S-EPMC5707188 | biostudies-literature
| S-EPMC5774215 | biostudies-literature
| S-EPMC4182132 | biostudies-literature
| S-EPMC9945297 | biostudies-literature
| S-EPMC4323259 | biostudies-literature
| S-EPMC5698065 | biostudies-literature
| S-EPMC7429848 | biostudies-literature
| S-EPMC6343735 | biostudies-literature
| S-EPMC5846036 | biostudies-literature