Chronic alcohol exposure differentially affects activation of female locus coeruleus neurons and the subcellular distribution of corticotropin releasing factor receptors.
Ontology highlight
ABSTRACT: Understanding the neurobiological bases for sex differences in alcohol dependence is needed to help guide the development of individualized therapies for alcohol abuse disorders. In the present study, alcohol-induced adaptations in (1) anxiety-like behavior, (2) patterns of c-Fos activation and (3) subcellular distribution of corticotropin releasing factor receptor in locus coeruleus (LC) neurons was investigated in male and female Sprague-Dawley rats that were chronically exposed to ethanol using a liquid diet. Results confirm and extend reports by others showing that chronic ethanol exposure produces an anxiogenic-like response in both male and female subjects. Ethanol-induced sex differences were observed with increased c-Fos expression in LC neurons of female ethanol-treated subjects compared to controls or male subjects. Results also reveal sex differences in the subcellular distribution of the CRFr in LC-noradrenergic neurons with female subjects exposed to ethanol exhibiting a higher frequency of plasmalemmal CRFrs. These adaptations have implications for LC neuronal activity and its neural targets across the sexes. Considering the important role of the LC in ethanol-induced activation of the hypothalamo-pituitary-adrenal (HPA) axis, the present results indicate important sex differences in feed-forward regulation of the HPA axis that may render alcohol dependent females more vulnerable to subsequent stress exposure.
SUBMITTER: Retson TA
PROVIDER: S-EPMC4258542 | biostudies-other | 2015 Jan
REPOSITORIES: biostudies-other
ACCESS DATA