Unknown

Dataset Information

0

The reason why thin-film silicon grows layer by layer in plasma-enhanced chemical vapor deposition.


ABSTRACT: Thin-film Si grows layer by layer on Si(001)-(2 × 1):H in plasma-enhanced chemical vapor deposition. Here we investigate the reason why this occurs by using quantum chemical molecular dynamics and density functional theory calculations. We propose a dangling bond (DB) diffusion model as an alternative to the SiH3 diffusion model, which is in conflict with first-principles calculation results and does not match the experimental evidence. In our model, DBs diffuse rapidly along an upper layer consisting of Si-H3 sites, and then migrate from the upper layer to a lower layer consisting of Si-H sites. The subsequently incident SiH3 radical is then adsorbed onto the DB in the lower layer, producing two-dimensional growth. We find that DB diffusion appears analogous to H diffusion and can explain the reason why the layer-by-layer growth occurs.

SUBMITTER: Kuwahara T 

PROVIDER: S-EPMC4360731 | biostudies-other | 2015

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC7116077 | biostudies-literature
| S-EPMC7472432 | biostudies-literature
| S-EPMC5480348 | biostudies-literature
| S-EPMC6130772 | biostudies-literature
| S-EPMC5988661 | biostudies-literature
| S-EPMC6199066 | biostudies-literature
| S-EPMC8425861 | biostudies-literature