Unknown

Dataset Information

0

Complementation between kinase-defective and activation-defective TGF-beta receptors reveals a novel form of receptor cooperativity essential for signaling.


ABSTRACT: Transforming growth factor-beta (TGF-beta) signals through two transmembrane serine/threonine kinases, T beta R-I and T beta R-II. TGF-beta binds to T beta R-II, allowing this receptor to associate with and phosphorylate T beta R-I which then propagates the signal. T beta R-I is phosphorylated within its GS domain, a region immediately preceding the kinase domain. To further understand the function of T beta R-I in this complex, we analyzed T beta R-I-inactivating mutations identified in cell lines that are defective in TGF-beta signaling yet retain ligand binding ability. The three mutations identified here all fall in the kinase domain of T beta R-I. One mutation disrupts the kinase activity of T beta R-I, whereas the other two mutations prevent ligand-induced T beta R-I phosphorylation, and thus activation, by T beta R-II. Unexpectedly, a kinase-defective T beta R-I mutant can functionally complement an activation- defective T beta R-I mutant, by rescuing its T beta R-II- dependent phosphorylation. Together with evidence that the ligand-induced receptor complex contains two or more T beta R-I molecules, these results support a model in which the kinase domain of one T beta R-I molecule interacts with the GS domain of another, enabling its phosphorylation and activation by T beta R-II. This cooperative interaction between T beta R-I molecules appears essential for TGF-beta signal transduction.

SUBMITTER: Weis-Garcia F 

PROVIDER: S-EPMC449943 | biostudies-other | 1996 Jan

REPOSITORIES: biostudies-other

altmetric image

Publications

Complementation between kinase-defective and activation-defective TGF-beta receptors reveals a novel form of receptor cooperativity essential for signaling.

Weis-Garcia F F   Massagué J J  

The EMBO journal 19960101 2


Transforming growth factor-beta (TGF-beta) signals through two transmembrane serine/threonine kinases, T beta R-I and T beta R-II. TGF-beta binds to T beta R-II, allowing this receptor to associate with and phosphorylate T beta R-I which then propagates the signal. T beta R-I is phosphorylated within its GS domain, a region immediately preceding the kinase domain. To further understand the function of T beta R-I in this complex, we analyzed T beta R-I-inactivating mutations identified in cell li  ...[more]

Similar Datasets

| S-EPMC2064369 | biostudies-literature
| S-EPMC2875073 | biostudies-literature
| S-EPMC2722039 | biostudies-literature
| S-EPMC4187064 | biostudies-literature
| S-EPMC6441868 | biostudies-literature
| S-EPMC8237574 | biostudies-literature
| S-EPMC5790339 | biostudies-literature
| S-EPMC8567202 | biostudies-literature
| S-EPMC5078606 | biostudies-literature
| S-EPMC2871186 | biostudies-literature