Unknown

Dataset Information

0

Crossroads of stress responses, development and flowering regulation--the multiple roles of Cyclic Nucleotide Gated Ion Channel 2.


ABSTRACT: The Arabidopsis autoimmune mutant, defense-no death 1 (dnd1) is a null mutant of CYCLIC NUCLEOTIDE-GATED ION CHANNEL2 (AtCNGC2). dnd1 exhibits constitutive pathogen resistance responses including higher levels of endogenous salicylic acid (SA), which is an important signaling molecule for pathogen defense responses. Recently we have reported that dnd1 exhibits a significantly delayed flowering phenotype, indicating the involvement of AtCNGC2 in flowering transition. However, since SA has been known to influence flowering timing as a positive regulator, the delayed flowering phenotype in dnd1 was unexpected. In this study, we have asked whether SA is involved in the dnd1-mediated delayed flowering phenotype. In addition, in order to gain insight into the involvement of SA and CNGCs in flowering transition, we analyzed the flowering transition of cpr22, another CNGC mutant with a similar autoimmune phenotype as dnd1 (including high SA accumulation), and null mutants of several other CNGCs. Our data suggest that dnd1 does not require SA or SA signaling for its delayed flowering phenotype, while SA was responsible for the early flowering phenotype of cpr22. None of the other CNGC mutants besides AtCNGC4 (1) displayed an alteration in flowering transition. This indicates that AtCNGC2 and AtCNGC4 have a unique role controlling flowering timing and this function is independent from its role in pathogen defense.

SUBMITTER: Fortuna A 

PROVIDER: S-EPMC4622972 | biostudies-other | 2015

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC5410850 | biostudies-literature
| S-EPMC6162275 | biostudies-literature
| S-EPMC7744796 | biostudies-literature
2013-07-03 | E-GEOD-40982 | biostudies-arrayexpress
2013-07-03 | GSE40982 | GEO
| S-EPMC7245078 | biostudies-literature
| S-EPMC6785730 | biostudies-literature
| EMPIAR-10081 | biostudies-other
| S-EPMC16866 | biostudies-literature
| S-EPMC5783306 | biostudies-literature