Unknown

Dataset Information

0

A dynamic and adaptive network of cytosolic interactions governs protein export by the T3SS injectisome.


ABSTRACT: Many bacteria use a type III secretion system (T3SS) to inject effector proteins into host cells. Selection and export of the effectors is controlled by a set of soluble proteins at the cytosolic interface of the membrane spanning type III secretion 'injectisome'. Combining fluorescence microscopy, biochemical interaction studies and fluorescence correlation spectroscopy, we show that in live Yersinia enterocolitica bacteria these soluble proteins form complexes both at the injectisome and in the cytosol. Binding to the injectisome stabilizes these cytosolic complexes, whereas the free cytosolic complexes, which include the type III secretion ATPase, constitute a highly dynamic and adaptive network. The extracellular calcium concentration, which triggers activation of the T3SS, directly influences the cytosolic complexes, possibly through the essential component SctK/YscK, revealing a potential mechanism involved in the regulation of type III secretion.

SUBMITTER: Diepold A 

PROVIDER: S-EPMC5490264 | biostudies-other | 2017 Jun

REPOSITORIES: biostudies-other

altmetric image

Publications

A dynamic and adaptive network of cytosolic interactions governs protein export by the T3SS injectisome.

Diepold Andreas A   Sezgin Erdinc E   Huseyin Miles M   Mortimer Thomas T   Eggeling Christian C   Armitage Judith P JP  

Nature communications 20170627


Many bacteria use a type III secretion system (T3SS) to inject effector proteins into host cells. Selection and export of the effectors is controlled by a set of soluble proteins at the cytosolic interface of the membrane spanning type III secretion 'injectisome'. Combining fluorescence microscopy, biochemical interaction studies and fluorescence correlation spectroscopy, we show that in live Yersinia enterocolitica bacteria these soluble proteins form complexes both at the injectisome and in th  ...[more]

Similar Datasets

| S-EPMC7162878 | biostudies-literature
| S-EPMC5966282 | biostudies-literature
| S-EPMC5767944 | biostudies-literature
| S-EPMC8243209 | biostudies-literature
| S-EPMC8873471 | biostudies-literature
| S-EPMC8860613 | biostudies-literature
| S-EPMC4961025 | biostudies-literature
| S-EPMC8630788 | biostudies-literature
| S-EPMC6014917 | biostudies-literature
| S-EPMC6193947 | biostudies-literature