Unknown

Dataset Information

0

Pulsatility and high shear stress deteriorate barrier phenotype in brain microvascular endothelium.


ABSTRACT: Microvascular endothelial cells at the blood-brain barrier exhibit a protective phenotype, which is highly induced by biochemical and biomechanical stimuli. Amongst them, shear stress enhances junctional tightness and limits transport at capillary-like levels. Abnormal flow patterns can reduce functional features of macrovascular endothelium. We now examine if this is true in brain microvascular endothelial cells. We suggest in this paper a complex response of endothelial cells to aberrant forces under different flow domains. Human brain microvascular endothelial cells were exposed to physiological or abnormal flow patterns. Physiologic shear (10-20?dyn/cm2) upregulates expression of tight junction markers Zona Occludens 1 (1.7-fold) and Claudin-5 (more than 2-fold). High shear stress (40?dyn/cm2) and/or pulsatility decreased their expression to basal levels and altered junctional morphology. We exposed cells to pathological shear stress patterns followed by capillary-like conditions. Results showed reversible recovery on the expression of tight junction markers. Flow protection of barrier phenotype commensurate with junctional signaling pathways decrease (Src, 0.25-fold, ERK, 0.77-fold) when compared to static conditions. This decrease was lost under high shear and pulsatile flow. In conclusion, abnormal shear stress inherent to systemic vascular disease leads to barrier impairment, which could be reverted by hemodynamic interventions.

SUBMITTER: Garcia-Polite F 

PROVIDER: S-EPMC5531355 | biostudies-other | 2017 Jul

REPOSITORIES: biostudies-other

altmetric image

Publications

Pulsatility and high shear stress deteriorate barrier phenotype in brain microvascular endothelium.

Garcia-Polite Fernando F   Martorell Jordi J   Del Rey-Puech Paula P   Melgar-Lesmes Pedro P   O'Brien Caroline C CC   Roquer Jaume J   Ois Angel A   Principe Alessandro A   Edelman Elazer R ER   Balcells Mercedes M  

Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 20160101 7


Microvascular endothelial cells at the blood-brain barrier exhibit a protective phenotype, which is highly induced by biochemical and biomechanical stimuli. Amongst them, shear stress enhances junctional tightness and limits transport at capillary-like levels. Abnormal flow patterns can reduce functional features of macrovascular endothelium. We now examine if this is true in brain microvascular endothelial cells. We suggest in this paper a complex response of endothelial cells to aberrant force  ...[more]

Similar Datasets

| S-EPMC4426013 | biostudies-literature
| S-EPMC3986701 | biostudies-literature
| S-EPMC5543552 | biostudies-literature
| S-EPMC4829259 | biostudies-literature
| S-EPMC4640321 | biostudies-literature
| S-EPMC6816707 | biostudies-literature
2004-07-07 | GSE1518 | GEO
| S-EPMC2118386 | biostudies-literature
| S-EPMC4827161 | biostudies-literature
| S-EPMC4222908 | biostudies-literature