Unknown

Dataset Information

0

Phoretic interactions and oscillations in active suspensions of growing Escherichia coli.


ABSTRACT: Bioluminescence imaging experiments were carried out to characterize spatio-temporal patterns of bacterial self-organization in active suspensions (cultures) of bioluminescent Escherichia coli and its mutants. An analysis of the effects of mutations shows that spatio-temporal patterns formed in standard microtitre plates are not related to the chemotaxis system of bacteria. In fact, these patterns are strongly dependent on the properties of mutants that characterize them as self-phoretic (non-flagellar) swimmers. In particular, the observed patterns are essentially dependent on the efficiency of proton translocation across membranes and the smoothness of the cell surface. These characteristics can be associated, respectively, with the surface activity and the phoretic mobility of a colloidal swimmer. An analysis of the experimental data together with mathematical modelling of pattern formation suggests the following: (1) pattern-forming processes can be described by Keller-Segel-type models of chemotaxis with logistic cell kinetics; (2) active cells can be seen as biochemical oscillators that exhibit phoretic drift and alignment; and (3) the spatio-temporal patterns in a suspension of growing E. coli form due to phoretic interactions between oscillating cells of high metabolic activity.

SUBMITTER: Simkus R 

PROVIDER: S-EPMC5990789 | biostudies-other | 2018 May

REPOSITORIES: biostudies-other

altmetric image

Publications

Phoretic interactions and oscillations in active suspensions of growing <i>Escherichia coli</i>.

Šimkus Remigijus R   Meškienė Rita R   Aučynaitė Agota A   Ledas Žilvinas Ž   Baronas Romas R   Meškys Rolandas R  

Royal Society open science 20180530 5


Bioluminescence imaging experiments were carried out to characterize spatio-temporal patterns of bacterial self-organization in active suspensions (cultures) of bioluminescent <i>Escherichia coli</i> and its mutants. An analysis of the effects of mutations shows that spatio-temporal patterns formed in standard microtitre plates are not related to the chemotaxis system of bacteria. In fact, these patterns are strongly dependent on the properties of mutants that characterize them as self-phoretic  ...[more]

Similar Datasets

| S-EPMC4428220 | biostudies-literature
| S-EPMC4446092 | biostudies-literature
2013-03-01 | GSE44614 | GEO
| S-EPMC8608831 | biostudies-literature
| S-EPMC7083825 | biostudies-literature
| S-EPMC5705671 | biostudies-literature
| S-EPMC6069781 | biostudies-literature
| S-EPMC3568559 | biostudies-literature
| S-EPMC1857700 | biostudies-literature
2020-09-01 | GSE153477 | GEO