Ultrafast laser-scanning time-stretch imaging at visible wavelengths.
Ontology highlight
ABSTRACT: Optical time-stretch imaging enables the continuous capture of non-repetitive events in real time at a line-scan rate of tens of MHz-a distinct advantage for the ultrafast dynamics monitoring and high-throughput screening that are widely needed in biological microscopy. However, its potential is limited by the technical challenge of achieving significant pulse stretching (that is, high temporal dispersion) and low optical loss, which are the critical factors influencing imaging quality, in the visible spectrum demanded in many of these applications. We present a new pulse-stretching technique, termed free-space angular-chirp-enhanced delay (FACED), with three distinguishing features absent in the prevailing dispersive-fiber-based implementations: (1) it generates substantial, reconfigurable temporal dispersion in free space (>1?ns?nm-1) with low intrinsic loss (<6?dB) at visible wavelengths; (2) its wavelength-invariant pulse-stretching operation introduces a new paradigm in time-stretch imaging, which can now be implemented both with and without spectral encoding; and (3) pulse stretching in FACED inherently provides an ultrafast all-optical laser-beam scanning mechanism at a line-scan rate of tens of MHz. Using FACED, we demonstrate not only ultrafast laser-scanning time-stretch imaging with superior bright-field image quality compared with previous work but also, for the first time, MHz fluorescence and colorized time-stretch microscopy. Our results show that this technique could enable a wider scope of applications in high-speed and high-throughput biological microscopy that were once out of reach.
SUBMITTER: Wu JL
PROVIDER: S-EPMC6061895 | biostudies-other | 2017 Jan
REPOSITORIES: biostudies-other
ACCESS DATA