Unknown

Dataset Information

0

Survival of midbrain dopamine neurons depends on the Bcl2 factor Mcl1.


ABSTRACT: Mitochondria-dependent apoptosis plays an important role in the embryonic development of the midbrain dopaminergic system as well as in Parkinson's disease. Central to mitochondria-dependent apoptosis is the Bcl2 family of apoptosis-regulating proteins. However, it was unclear which Bcl2 proteins are important for the survival of dopaminergic neurons. Here, we identify Mcl1 as a critical Bcl2 pro-survival factor in midbrain dopaminergic neurons. Using a chemical biology approach to inhibit various components of the apoptotic machinery in the dopaminergic MN9D cell line or the control neuroblastoma N2A cell line, we find that functional inhibition of Mcl1 with the high affinity small molecule inhibitor UMI-77 results in a rapid and dose-dependent loss of viability, selectively in dopaminergic cells. In-depth analysis of the apoptotic signaling pathway reveals that chemical inhibition of Mcl1 results in the activation of Bax, activation of cleaved caspase-3 and finally cell death. The dependence of mouse dopaminergic midbrain neurons on Mcl1 was confirmed using ex vivo slice cultures from Pitx3GFP/+ and wildtype mice. In mouse dopaminergic midbrain neurons positive for the midbrain dopaminergic marker Pitx3, or tyrosine hydroxylase, UMI-77 treatment caused a dramatic increase in cleaved caspase 3, indicating that Mcl1 activity is required for basal neuronal survival. Overall, our results suggest that Mcl1 is of critical importance to dopaminergic neurons and is a weak link in the chain controlling cellular survival. Boosting the pro-survival function of Mcl1 should be pursued as a therapeutic approach to augment the resilience of midbrain dopaminergic neurons to apoptotic stress in Parkinson's disease.

SUBMITTER: Robinson EJ 

PROVIDER: S-EPMC6249233 | biostudies-other | 2018

REPOSITORIES: biostudies-other

altmetric image

Publications

Survival of midbrain dopamine neurons depends on the Bcl2 factor Mcl1.

Robinson Edward J EJ   Aguiar Sebastian P SP   Kouwenhoven Willemieke M WM   Starmans Dorinde S DS   von Oerthel Lars L   Smidt Marten P MP   van der Heide Lars P LP  

Cell death discovery 20181121


Mitochondria-dependent apoptosis plays an important role in the embryonic development of the midbrain dopaminergic system as well as in Parkinson's disease. Central to mitochondria-dependent apoptosis is the Bcl2 family of apoptosis-regulating proteins. However, it was unclear which Bcl2 proteins are important for the survival of dopaminergic neurons. Here, we identify Mcl1 as a critical Bcl2 pro-survival factor in midbrain dopaminergic neurons. Using a chemical biology approach to inhibit vario  ...[more]

Similar Datasets

| S-EPMC4882228 | biostudies-other
| S-EPMC3578579 | biostudies-literature
| S-EPMC8632262 | biostudies-literature
| S-EPMC4967922 | biostudies-literature
| S-EPMC4334447 | biostudies-literature
| S-EPMC3405174 | biostudies-literature
| S-EPMC5785252 | biostudies-literature
| S-EPMC515094 | biostudies-literature
| S-EPMC9040469 | biostudies-literature
| S-EPMC8651008 | biostudies-literature